• 제목/요약/키워드: AI network

검색결과 776건 처리시간 0.039초

자동화기반의 가짜 뉴스 탐지를 위한 연구 분석 (Research Analysis in Automatic Fake News Detection)

  • 좌희정;오동석;임희석
    • 한국융합학회논문지
    • /
    • 제10권7호
    • /
    • pp.15-21
    • /
    • 2019
  • 가짜 정보를 탐지하기 위한 연구는 2016년 미국 대통령 선거 이후 본격적으로 시작되었다. 정확한 출처를 알 수 없는 정보들이 뉴스 형식으로 생산되고, 이는 자극적이고 흥미로운 소재에 많은 관심을 보이는 대중의 특성에 따라 빠른 속도로 확산되고 있다. 또한, 소셜 네트워크 서비스 등 정보를 전달하기 쉬운 플랫폼의 대중화는 이러한 현상을 더욱 악화시킨다. Poynter는 IFCN(International Fact Checking Network)를 만들어 숙련된 전문가들이 사실 여부를 판단할 수 있는 가이드라인을 제시하고, 팩트 체크 기관을 위한 강령을 제공하고 있다. 하지만 이러한 접근 방법은 하나의 기사에 대한 진위 여부를 검증하기 위해 다수의 전문가 인력이 투입되어야 하므로 시간 및 금전적 비용이 크다. 따라서 지속적으로 증가하는 가짜 뉴스에 효율적으로 대응할 수 있는 자동화된 가짜 뉴스 탐지 기술에 대한 연구가 주목받고 있다. 본 논문에서는 최근 딥러닝 기술의 접목으로 인해 빠르게 발전하고 있는 가짜 뉴스 탐지 시스템과 연구들을 정리 및 분석한다. 또한, 많은 연구가 필요한 본 분야에 연구자들이 쉽게 접근할 수 있도록 다양한 형태로 주어지는 학습 말뭉치 및 챌린지들도 정리한다.

육군 정보공유체계에 사회관계망 분석을 적용하기 위한방안: 사례 연구 (Approaches to Applying Social Network Analysis to the Army's Information Sharing System: A Case Study)

  • 박건우
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.597-603
    • /
    • 2023
  • 군사 작전의 패러다임은 정보기술의 발전으로 플랫폼 중심전에서 네트워크 중심전, 그리고 정보 중심전으로 진화해왔다. 최근 몇 년간 빅 데이터, 인공지능, 사물인터넷(IoT)과 같은 첨단 기술의 발전으로 인해 군사 작전은 인공지능 기반의 지식 중심전(KCW)으로 진화하고 있다. 이에 따라 군은 신뢰성 있는 C4I (Command, Control, Communication, Computer, Intelligence) 시스템 구축을 위해 첨단 정보통신기술(ICT)의 통합에 큰 비중을 두고 있다. 본 연구는 C4I 시스템의 전투 능력 향상, 네트워크 기반 환경에서의 최적 활용, 정보 흐름의 효율적인 부하분산, 원활한 의사소통, 지식공유의 효과적인 구현 등을 분석하고 평가하기 위해 데이터 마이닝 기법을 적용할 필요성을 강조한다. 데이터 마이닝은 현대 빅 데이터 분석의 핵심 기술로, 본 연구는 데이터 마이닝을 활용하여 실제 사례를 분석하고 군의 지휘 통제체계의 효율성을 극대화하는 실용적인 전략을 제안하였다. 연구 결과는 C4I 시스템의 성능을 더 깊게 이해하고 현대 군사 작전에 지식 중심전을 강화하는 데 유용한 통찰을 제공할 것으로 기대한다.

인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용 (AI-based stuttering automatic classification method: Using a convolutional neural network)

  • 박진;이창균
    • 말소리와 음성과학
    • /
    • 제15권4호
    • /
    • pp.71-80
    • /
    • 2023
  • 본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후 유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기 모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 '유창'은 1.00, '막힘'은 0.67, '반복'은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.

인공지능 산·학·연 협력 공동연구 네트워크 분석 (Analysis of Industry-academia-research Cooperation Networks in the Field of Artificial Intelligence)

  • 이정환;장성수
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.155-167
    • /
    • 2024
  • 본 연구는 인공지능 분야의 공동연구 중요성을 인식하고 특허를 중심으로 산·학·연 기술협력 특성을 TES(Techno-Economic Segment) 분석으로 파악하였다. 이를 위해 2012년 이후 미국, 중국 등 5개국 특허청에 출원된 10년의 인공지능 특허 113,289건 가운데 7,062건을 공동연구 대상으로 하여 기업, 대학, 연구기관 등의 경제 주체를 식별하고, 기술협력 주제와 특성을 파악하였다. 분석결과 인공지능 분야 기술협력이 증가하는 가운데 전체 협력 가운데 산업계와 산업계(40%), 산업계와 대학(25.2%)의 협력이 상대적으로 높은 비중을 차지하였다. 그리고 자금과 분석데이터에 강점을 가진 산업계와 대학(9.8%), 우수한 인력을 보유한 대학 간 협력(1.9%) 비율이 증가하는 추세를 확인하였고, 이를 통해 대학의 역할이 강화되고 있음을 볼 수 있었다. 또한 토픽모델링과 네트워크 분석을 통해 협력특허 관심 분야와 연구 주체 간 협력 관계를 파악한 결과 협력 유형에 상관없이 유사한 관심 연구 주제가 도출되는 가운데, 자율주행, 엣지 컴퓨팅, 클라우드, 마케팅 및 소비자 행동 분석 등의 응용 영역으로 연구범위가 확대되고, 협력 주체는 다양해지며, 중국 대학이 중심이 되는 대규모 네트워크가 발현되는 현상을 확인할 수 있었다.

메타분석을 이용한 호르몬 수용체 양성/인체 상피세포 성장 인자 수용체 음성 진행성 유방암에서 사이클린 의존성 인산화효소 4/6 억제제와 방향화효소 억제제 병용요법과 방향화효소 억제제 단독요법의 임상적 유효성 및 안전성 비교 연구 (A Comparative Study on the Clinical Efficacy and Safety between Combination Therapy with CDK 4/6 Inhibitor and AI Versus AI Monotherapy in HR+/HER type2- Advanced Breast Cancer: Updated Meta-analysis)

  • 김민지;김경;조문경;손기호;백인환
    • 한국임상약학회지
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Objective: The aim of the study was to perform a meta-analysis of randomized clinical trials to compare the clinical efficacy and safety between combination of cyclin-dependent kinase (CDK) 4/6 inhibitors with aromatase inhibitors (AIs) and AIs alone in patients with hormone receptor+/human epidermal growth factor receptor type2-(HR+/HER2-) advanced breast cancer. Methods: Published clinical studies were identified through electronic database searches until February 2019. Literature qualities were assessed by the Scottish Intercollegiate Guidelines Network Checklist. Key endpoints of efficacy were progression-free survival (PFS), objective response rate (ORR), and clinical benefit (CB). Endpoints of safety were adverse events (AEs) (neutropenia, leukopenia, any grade 3/4 AEs, and serious AEs) and on-treatment death. Meta-analysis was performed using the RevMan 5.3 software. Results: The selected five studies were evaluated as "good" in quality assessment. Compared to AIs alone, the combination therapy significantly improved PFS (pooled hazard ratio=0.55; 95% confidence interval (CI) 0.49-0.62), ORR (odds ratio=1.78; 95% CI=1.49-2.13), and CB (odds ratio=1.86; 95% CI=1.51-2.28). The prevalence of AEs was significantly higher in the combination group than in the AIs alone group. On-treatment death was greater in the combination group than in the AIs alone group, although insignificant. Conclusion: The combination therapy of CDK4/6 inhibitors with AIs was more effective for the treatment of HR+/HER2- advanced breast cancer, but less safe than AIs alone. The combination therapy should be effectively managed through patient monitoring, and further studies are needed to reduce AEs in the combination therapy of CDK4/6 inhibitors with AIs.

딥 러닝 기반 코로나19 흉부 X선 판독 기법 (A COVID-19 Chest X-ray Reading Technique based on Deep Learning)

  • 안경희;엄성용
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.789-795
    • /
    • 2020
  • 전 세계적으로 유행하는 코로나19로 인해 많은 사망자가 보고되고 있다. 코로나19의 추가 확산을 막기 위해서는 의심 환자에 대해 신속하고 정확한 영상판독을 한 후, 적절한 조치를 취해야 한다. 이를 위해 본 논문은 환자의 감염 여부를 의료진에게 제공해 영상판독을 보조할 수 있는 딥 러닝 기반 코로나19 흉부 X선 판독 기법을 소개한다. 우선 판독모델을 학습하기 위해서는 충분한 데이터셋이 확보되어야 하는데, 현재 제공하는 코로나19 오픈 데이터셋은 학습의 정확도를 보장하기에 그 영상 데이터 수가 충분하지 않다. 따라서 누적 적대적 생성 신경망(StackGAN++)을 사용해 인공지능 학습 성능을 저하하는 영상 데이터 수적 불균형 문제를 해결하였다. 다음으로 판독모델 개발을 위해 증강된 데이터셋을 사용하여 DenseNet 기반 분류모델 학습을 진행하였다. 해당 분류모델은 정상 흉부 X선과 코로나 19 흉부 X선 영상을 이진 분류하는 모델로, 실제 영상 데이터 일부를 테스트데이터로 사용하여 모델의 성능을 평가하였다. 마지막으로 설명 가능한 인공지능(eXplainable AI, XAI) 중 하나인 Grad-CAM을 사용해 입력 영상의 질환유무를 판단하는 근거를 제시하여 모델의 신뢰성을 확보하였다.

AI 키즈폰의 소비자리뷰 분석을 통한 제품개선 전략에 대한 연구 (Formulating Strategies from Consumer Opinion Analysis on AI Kids Phone using Text Mining)

  • 김도훈;차경진
    • 한국전자거래학회지
    • /
    • 제24권2호
    • /
    • pp.71-89
    • /
    • 2019
  • 기업은 소비자가 만족하는 제품을 개발하고 개선하기 위하여 설문조사와 같은 전통적인 마케팅리서치 방법을 이용하여, 소비자의 의견을 듣고, 분석하여 반영하는 노력을 한다. 최근에는 인터넷 사이트, 사회관계망(SNS) 등 소비자 커뮤니케이션 플랫폼에서 관련 자료를 수집하고 분석하는 방법이 주목을 받고 있다. 한편, 급속한 정보통신기술의 발달과 함께 이동통신사들이 아동을 위한 디지털상품을 출시하고 있는데, 특히 유해한 콘텐츠로부터 아동을 보호하고, 부모와 아동들에게 필요한 정보와 기능은 보완된 디지털 디바이스들이 등장하고 있다. 이 가운데 키즈폰은 불필요한 기능은 없애고 아동들에게 기본 안전 기능을 담은 웨어러블 디바이스로서 부모가 쉽게 자녀의 위치를 실시간으로 알게 해주는 유용한 도구이다. 키즈폰은 스마트폰에 비해 저렴하고 간편하지만 고장이 잦고, 안전 이외에 유용한 기능을 기대하기 힘들며, 부가적인 기능들 또한 유용하지 못하다는 점이 지적되고 있다. 본 연구는 국내 이동통신사의 키즈폰(Kids Phone)에 대한 리뷰를 분석하여, 제품들의 특성과 장단점을 파악하고, 디바이스와 서비스에 대한 개선방안을 제안함으로써, SNS 소비자 분석을 통한 제품 서비스 개선 전략수립 방법을 제시하고자 한다. 이를 위해 국내 쇼핑몰의 리뷰 섹션에서 자료를 수집하고, TF/IDF, 감성분석, 네트워크분석 등의 텍스트 마이닝 기법을 활용하여 소비자 감성분석을 실시하였다. 고객 리뷰는 온라인 쇼핑몰과 네이버 블로그에서 크롤링하여 수집 하였으며, 통계/데이터 마이닝 및 그래픽은 'R'과 빅데이터 분석 솔루션 'Textom', 그리고 오픈소스 프로그래밍 언어인 'Python'을 함께 사용하여 분석하고 시각화하였다. 본 연구를 통해 각 이동통신사의 현재 제품(키즈폰)에 대한 소비자가 느끼는 주요이슈와 제품의 장단점을 파악할 수 있었으며, 더 나아가 감성분석을 바탕으로 키즈폰 제품의 서비스 개선전략 방향을 제안할 수 있었다.

5개국 바이오헬스 산업의 기술융합과 트렌드 분석 : 특허 동시분류분석과 텍스트마이닝을 활용하여 (Technology Convergence & Trend Analysis of Biohealth Industry in 5 Countries : Using patent co-classification analysis and text mining)

  • 박수현;윤영미;김호용;김재수
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.9-21
    • /
    • 2021
  • 본 연구는 IP5국가(KR, EP, JP, US, CN)의 바이오헬스 분야 특허데이터를 기반으로 기술의 융합과 트렌드를 파악하여 해당 산업 분야의 발전 방향을 제시하는 것을 목적으로 한다. 기술융합 현황 파악을 위해 특허 동시분류분석 기반의 네트워크분석과 TF-IDF 기반의 텍스트마이닝을 주요 방법론으로 활용하였고, 분석 결과 바이오헬스 산업의 기술융합 클러스터는 크게 (A)치료용 의료기기, (B)의료데이터프로세싱, (C)생체계측용 의료기기의 세 가지 형태로 도출되었다. 또한 기술융합 결과를 토대로 한 트렌드 분석의 결과에서 우리나라는 (B)의료데이터프로세싱 분야에서 시장선도국으로 도출됨에 따라 향후 상업적 가치가 높은 특허로 시장 우위를 선점할 수 있는 가능성이 높다고 분석되었다. 특히 해당 분야는 2019년 1월 국회에서 통과된 '데이터3법'이라는 정책적 변환과 더불어, 국내 바이오헬스 기업들의 의료데이터 활용 가능성이 확대됨에 따라 해당 기술에 대한 기술융합 활성화 정책 수립과 R&D 지원 전략이 필요할 것으로 전망된다.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.

딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가 (Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning)

  • 김경남;김선종
    • 문화기술의 융합
    • /
    • 제8권2호
    • /
    • pp.385-391
    • /
    • 2022
  • 소도체의 품질평가는 축산업 분야의 중요한 문제이다. 최근 인공지능을 기반으로 한 AI 모니터 시스템을 통해 품질 관리사는 소도체 영상의 분석이나 결과 정보를 기반으로 정확한 판단에 도움을 받을 수 있다. 이러한 인공지능의 데이터셋은 성능을 판단하는 중요한 요소이다. 기존의 데이터셋은 표면의 방향이나 해상도가 달라질 수 있다. 본 논문에서는 딥러닝을 이용한 소도축 영상의 등급을 효율적으로 관리할 수 있는 단계별 분류 모델을 제안하였다. 그리고 기존의 세그멘테이션 추출된 영상의 데이터셋의 다양한 조건의 일관성을 위해 새로운 데이터셋 1,300장을 구성하였다. 새로운 데이셋을 이용한 5등급 분류에 대한 딥러닝의 인식률은 72.5%를 얻었다. 제안된 단계별 분류는 1++, 1+, 1등급과 2, 3등급의 차이가 크다는 것을 이용한 방안이다. 이로 인해 제안된 2단계 모델의 두 가지 방법에 따른 실험 결과, 73.7%, 77.2%의 인식률을 얻을 수 있었다. 이처럼 1단계 인식률을 100%를 갖는 데이터셋을 가진다면 더욱 효율적인 방법이 될 것이다.