• 제목/요약/키워드: AI network

검색결과 774건 처리시간 0.021초

Changes in the Structure of Collaboration Network in Artificial Intelligence by National R&D Stage

  • Hyun, Mi Hwan;Lee, Hye Jin;Lim, Seok Jong;Lee, KangSan DaJeong
    • Journal of Information Science Theory and Practice
    • /
    • 제10권spc호
    • /
    • pp.12-24
    • /
    • 2022
  • This study attempted to investigate changes in collaboration structure for each stage of national Research and Development (R&D) in the artificial intelligence (AI) field through analysis of a co-author network for papers written under national R&D projects. For this, author information was extracted from national R&D outcomes in AI from 2014 to 2019. For such R&D outcomes, NTIS (National Science & Technology Information Service) information from the KISTI (Korea Institute of Science and Technology Information) was utilized. In research collaboration in AI, power function structure, in which research efforts are led by some influential researchers, is found. In other words, less than 30 percent is linked to the largest cluster, and a segmented network pattern in which small groups are primarily developed is observed. This means a large research group with high connectivity and a small group are connected with each other, and a sporadic link is found. However, the largest cluster grew larger and denser over time, which means that as research became more intensified, new researchers joined a mainstream network, expanding a scope of collaboration. Such research intensification has expanded the scale of a collaborative researcher group and increased the number of large studies. Instead of maintaining conventional collaborative relationships, in addition, the number of new researchers has risen, forming new relationships over time.

AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현 (Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model)

  • 김서연;윤영선;은성배;차신;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.71-77
    • /
    • 2021
  • 최근 이질적인 하드웨어 특성을 고려한 IoT 응용 지원 프레임워크의 효율적인 프로그램 개발이 요구되고 있다. 또한, 인간의 뇌를 모사하여 스스로 학습 및 자율적 컴퓨팅이 가능한 뉴로모픽 아키텍처의 발전으로 하드웨어 지원의 범위가 넓어지고 있다. 하지만 기존 대부분의 IoT 통합개발환경에서는 AI(Artificial Intelligence) 기능을 지원하거나 뉴로모픽 아키텍처와 같은 다양한 하드웨어와 결합된 서비스 지원이 어렵다. 본 논문에서는 2세대 인공 신경망 및 3세대 스파이킹 신경망 모델을 모두 지원하는 AI 컴포넌트 추상화 모델을 설계하고 제안 모델 기반의 자율형 IoT 통합개발환경을 구현하였다. IoT 개발자는 AI 및 스파이킹 신경망에 대한 지식이 없어도 제안 기법을 통해 자동으로 AI 컴포넌트를 생성할 수 있으며 런타임에 따라 코드 변환이 유연하여 개발 생산성이 높다. 제안 기법의 실험을 진행하여 가상 컴포넌트 계층으로 인한 변환 지연시간이 발생할 수 있으나 차이가 크지 않음을 확인하였다.

군사혁신(RMA) 측면에서 바라본 우크라이나군의 지능화 전투사례 연구 (A Study on AI-Enabled Combat Cases of Ukrainian Armed Forces in the RMA (Revolution in Military Affairs) Aspect)

  • 조상근;;김기원;손인근;박상혁
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.308-315
    • /
    • 2023
  • Russia invaded Ukraine in February 2022. Many military experts predicted that Russia could defeat Ukraine within a week, but the Ukraine-Russia War has not been going as expected. Indeed, Ukraine military has been defending well and seems to fight more efficiently than Russian military. There are many reasons for this unexpected situation and one apparent thing is due to artificial intelligence (AI) technologies. This study focused on AI-enabled combats that the Armed Forces of Ukraine has carried out around Siverskyi Donets River, the Crimean Peninsula, and suburbs of Kyiv. For more systematic analysis, the revolution in military affairs (RMA) theory was applied. There are four significant implications inferred by studying current Ukraine-Russia War. First, AI technologies are effective even in the current status and seems to be more influential. Second, hyper-connected network by satellite communications must be needed to enhance the AI weapon effects. Third, military AI technologies should be based on the civil-military cooperation to keep up with pace of technological innovation. Fourth, AI ethics in military should be seriously considered and established in the use of AI technologies. We expect that this study could help ROK Armed Forces to be modernized in the revolutionary fashion, especially for manned and unmanned teaming (MUM-T) system.

AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰 (Artificial Intelligence Based Medical Imaging: An Overview)

  • 홍준용;박상현;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권3호
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

게임 인공지능 초기이용자 만족에 미치는 요인 분석 - 엔씨소프트의 블레이드앤소울 AI 조기수용자를 중심으로 - (The Study of Users' Satisfaction on Game AI - Focused on Blade&Soul AI by NCSoft -)

  • 여향란;위정현
    • 한국게임학회 논문지
    • /
    • 제20권3호
    • /
    • pp.3-14
    • /
    • 2020
  • 본 연구의 목적은 게임 인공지능의 조기정착과 확산을 위해 이용자 만족에 영향을 미치는 요인을 분석하는 것이다. 이를 위해 엔씨소프트의 MMORPG 게임 '블레이드&소울'을 플레이한 경험이 있는 20명의 이용자를 대상으로 심층 인터뷰를 진행하였다. 인터뷰 자료는 언어네트워크 분석 프로그램을 통해 핵심주제어를 파악, 주제어 사이의 관계를 분석하였다. 분석 결과 인공지능 게임 이용자 만족도에 영향을 미치는 키워드로 패턴, 콘텐츠, 다양성, 시스템, 신규유저확보 등이 도출되었다.

브레인 모사 인공지능 기술 (Brain-Inspired Artificial Intelligence)

  • 김철호;이정훈;이성엽;우영춘;백옥기;원희선
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Generative Artificial Intelligence for Structural Design of Tall Buildings

  • Wenjie Liao;Xinzheng Lu;Yifan Fei
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.203-208
    • /
    • 2023
  • The implementation of artificial intelligence (AI) design for tall building structures is an essential solution for addressing critical challenges in the current structural design industry. Generative AI technology is a crucial technical aid because it can acquire knowledge of design principles from multiple sources, such as architectural and structural design data, empirical knowledge, and mechanical principles. This paper presents a set of AI design techniques for building structures based on two types of generative AI: generative adversarial networks and graph neural networks. Specifically, these techniques effectively master the design of vertical and horizontal component layouts as well as the cross-sectional size of components in reinforced concrete shear walls and frame structures of tall buildings. Consequently, these approaches enable the development of high-quality and high-efficiency AI designs for building structures.

Artificial Intelligence (AI) and Blockchain-based Online Payments in the Global World

  • Ahlam Alhalafi;Prakash Veeraraghavan;Dalal Hanna
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.1-11
    • /
    • 2024
  • Payment systems are evolving, and this study examines how blockchain and AI improve online transactional security and service quality. The study examines micro and macro payment systems, compares online, and offline methods all over the world. The study also examines how blockchain and AI affect payment system security, privacy, and efficiency globally and rapidly digitizing economy. Digital payment methods are growing all over the world with high literacy and digital engagement, but they face challenges. The research highlights cybersecurity threats and the need to balance user convenience and security. It suggests blockchain and AI improve online payment services, supporting the policies for different countries. In this extensive research survey, we compare and evaluate the strengths and weaknesses of various payment systems, their practicality, and their robustness. This study also examines how technological innovations and payment systems interact to reveal how blockchain and AI could transform the financial sector. It seeks to understand how technology-enhancing service quality can boost customer satisfaction and financial stability in the digital age. The findings should help policymakers, financial institutions, and technology developers optimize online payment systems for a more secure and efficient digital economy.

Application of Deep Recurrent Q Network with Dueling Architecture for Optimal Sepsis Treatment Policy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Ho, Ngoc-Huynh
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.48-54
    • /
    • 2021
  • Sepsis is one of the leading causes of mortality globally, and it costs billions of dollars annually. However, treating septic patients is currently highly challenging, and more research is needed into a general treatment method for sepsis. Therefore, in this work, we propose a reinforcement learning method for learning the optimal treatment strategies for septic patients. We model the patient physiological time series data as the input for a deep recurrent Q-network that learns reliable treatment policies. We evaluate our model using an off-policy evaluation method, and the experimental results indicate that it outperforms the physicians' policy, reducing patient mortality up to 3.04%. Thus, our model can be used as a tool to reduce patient mortality by supporting clinicians in making dynamic decisions.

Transformer를 활용한 인공신경망의 경량화 알고리즘 및 하드웨어 가속 기술 동향 (Trends in Lightweight Neural Network Algorithms and Hardware Acceleration Technologies for Transformer-based Deep Neural Networks)

  • 김혜지;여준기
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.12-22
    • /
    • 2023
  • The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.