• Title/Summary/Keyword: AI knowledge

Search Result 351, Processing Time 0.019 seconds

Analysis of Artificial Intelligence's Technology Innovation and Diffusion Pattern: Focusing on USPTO Patent Data (인공지능의 기술 혁신 및 확산 패턴 분석: USPTO 특허 데이터를 중심으로)

  • Baek, Seoin;Lee, Hyunjin;Kim, Heetae
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.86-98
    • /
    • 2020
  • The artificial intelligence (AI) is a technology that will lead the future connective and intelligent era by combining with almost all industries in manufacturing and service industry. Although Korea is one of the world's leading artificial intelligence group with the United States, Japan, and Germany, but its competitiveness in terms of artificial intelligence patent is relatively low compared to others. Therefore, it is necessary to carry out quantitative analysis of artificial intelligence patents in various aspects in order to examine national competitiveness, major industries and future development directions in artificial intelligence technology. In this study, we use the IPC technology classification code to estimate the overall life cycle and the speed of development of the artificial intelligence technology. We collected patents related to artificial intelligence from 2008 to 2018, and analyze patent trends through one-dimensional statistical analysis, two-dimensional statistical analysis and network analysis. We expect that the technological trends of the artificial intelligence industry discovered from this study will be exploited to the strategies of the artificial intelligence technology and the policy making of the government.

Attainment Index-based Relative Evaluation Method for R&D Programs with Heterogeneous Objectives (이질적 목적을 지닌 R&D 사업들을 위한 달성지수 기반의 상대적 평가기법)

  • Jung, Uk;Yim, Seong-Min;Kim, Yun-Jong;Jeong, Sang-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.29-37
    • /
    • 2009
  • National R&D programs play an important role in the development of a country in this age of the knowledge economy. Since many numbers of R&D programs compete for limited resources such as national R&D budget, the R&D program evaluation problem is a challenging decision-making problem faced by decision makers that deal with R&D management. In this sense, DEA(Data Envelopment Analysis) has been regarded as one of the most widely accepted methods to measure the relative efficiency of productivity of R&D programs. DEA is a methodology to measure and to evaluate the relative efficiency of a homogeneous set of decision-making units(DMUs) in a process which uses multiple inputs to produce multiple outputs. However, the sample of the R&D programs could consist of two or more naturally occurring subsets, thus exhibiting clear signs of heterogeneity such as different objectives. In such situations, the fairness of DEA is limited, for the nature of the relative efficiency of a DMU is likely to be influenced by its membership in a particular subset of the sample. In this study, we propose a methodology AI-DEA(attainment index DEA) allowing for reflecting decision maker's subjective judgement on difference among different subsets of R&D programs which have heterogeneous objectives. This methodology combines AHP and Delphi in order to decide the attainmnet index of each DMU for each outputs, and apply them to DEA model. We illustrate the proposed approach with a pilot evaluation of 13 programs involving 6 different subsets of Korean National R&D programs and compares the results of the original DEA model and AI-DEA model.

A Study on the Important Factors for Accounting Information Quality Impact on AIS Data Quality Outcomes (회계정보 품질에 영향을 미치는 요인이 회계정보시스템 데이터 품질에 미치는 영향)

  • Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.24-29
    • /
    • 2019
  • AIS is one of the most critical systems in any organization. Data quality plays a critical role in a knowledge-based economy. The objective of this study is to identify the most important factors for accounting information quality and their impact on AIS data quality outcomes. This study includes an extensive literature review to identify a set of CSF for data quality. The study uses empirical data to test the research hypothesis and resluts show that the top three most important factors that affect AIS's data quality are toop management commitmentm the nature of the AIS and input controls. The study further uses regression analysis to test the effect of those factors on AIS data quality, finding that there is a significant positive relationship between the perceived performance of the three factors and AIS data quality putcomes. To be develop to AIS data quality further study for CSF's control methodology is necessary.

Convergence Education Program Using Smart Farm for Artificial Intelligence Education of Elementary School Students (초등학생 대상의 인공지능교육을 위한 스마트팜 활용 융합교육 프로그램)

  • Kim, Jung-Hoon;Moon, Seong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.203-210
    • /
    • 2021
  • This study was conducted to develop a convergence education program using smart farms with both input data(temperature, humidity, etc.) and output data(vegetables, fruits, etc.) that are easily accessible in everyday life so that elementary school students can intuitively and easily understand the principles of artificial intelligence(AI) learning. In order to develop this program, we conducted a prior study analysis of a horticulture, software, robot units in the 2015 Practical Arts curriculum and artificial intelligence education. Based on this, 13 components and 16 achievement criteria were selected, and AI programs of 4 sessions(a total of 8 hours). This program can be used as a reference when developing various teaching materials for artificial intelligence education in the future.

Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

  • Federico Antonello;Jacopo Buongiorno;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3409-3416
    • /
    • 2023
  • Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.

A study on Korean multi-turn response generation using generative and retrieval model (생성 모델과 검색 모델을 이용한 한국어 멀티턴 응답 생성 연구)

  • Lee, Hodong;Lee, Jongmin;Seo, Jaehyung;Jang, Yoonna;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Recent deep learning-based research shows excellent performance in most natural language processing (NLP) fields with pre-trained language models. In particular, the auto-encoder-based language model proves its excellent performance and usefulness in various fields of Korean language understanding. However, the decoder-based Korean generative model even suffers from generating simple sentences. Also, there is few detailed research and data for the field of conversation where generative models are most commonly utilized. Therefore, this paper constructs multi-turn dialogue data for a Korean generative model. In addition, we compare and analyze the performance by improving the dialogue ability of the generative model through transfer learning. In addition, we propose a method of supplementing the insufficient dialogue generation ability of the model by extracting recommended response candidates from external knowledge information through a retrival model.

Evaluating ChatGPT's Competency in BIM Related Knowledge via the Korean BIM Expertise Exam (BIM 운용 전문가 시험을 통한 ChatGPT의 BIM 분야 전문 지식 수준 평가)

  • Choi, Jiwon;Koo, Bonsang;Yu, Youngsu;Jeong, Yujeong;Ham, Namhyuk
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.21-29
    • /
    • 2023
  • ChatGPT, a chatbot based on GPT large language models, has gained immense popularity among the general public as well as domain professionals. To assess its proficiency in specialized fields, ChatGPT was tested on mainstream exams like the bar exam and medical licensing tests. This study evaluated ChatGPT's ability to answer questions related to Building Information Modeling (BIM) by testing it on Korea's BIM expertise exam, focusing primarily on multiple-choice problems. Both GPT-3.5 and GPT-4 were tested by prompting them to provide the correct answers to three years' worth of exams, totaling 150 questions. The results showed that both versions passed the test with average scores of 68 and 85, respectively. GPT-4 performed particularly well in categories related to 'BIM software' and 'Smart Construction technology'. However, it did not fare well in 'BIM applications'. Both versions were more proficient with short-answer choices than with sentence-length answers. Additionally, GPT-4 struggled with questions related to BIM policies and regulations specific to the Korean industry. Such limitations might be addressed by using tools like LangChain, which allow for feeding domain-specific documents to customize ChatGPT's responses. These advancements are anticipated to enhance ChatGPT's utility as a virtual assistant for BIM education and modeling automation.

Analysis of Research Trends in Cloud Security Using Topic Modeling and Time-Series Analysis: Focusing on NTIS Projects (토픽모델링과 시계열 분석을 활용한 클라우드 보안 분야 연구 동향 분석 : NTIS 과제를 중심으로)

  • Sun Young Yun;Nam Wook Cho
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.31-38
    • /
    • 2024
  • Recent expansion in cloud service usage has heightened the importance of cloud security. The purpose of this study is to analyze current research trends in the field of cloud security and to derive implications. To this end, R&D project data provided by the National Science and Technology Knowledge Information Service (NTIS) from 2010 to 2023 was utilized to analyze trends in cloud security research. Fifteen core topics in cloud security research were identified using LDA topic modeling and ARIMA time series analysis. Key areas identified in the research include AI-powered security technologies, privacy and data security, and solving security issues in IoT environments. This highlights the need for research to address security threats that may arise due to the proliferation of cloud technologies and the digital transformation of infrastructure. Based on the derived topics, the field of cloud security was divided into four categories to define a technology reference model, which was improved through expert interviews. This study is expected to guide the future direction of cloud security development and provide important guidelines for future research and investment in academia and industry.

Utilizing AI Foundation Models for Language-Driven Zero-Shot Object Navigation Tasks (언어-기반 제로-샷 물체 목표 탐색 이동 작업들을 위한 인공지능 기저 모델들의 활용)

  • Jeong-Hyun Choi;Ho-Jun Baek;Chan-Sol Park;Incheol Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.293-310
    • /
    • 2024
  • In this paper, we propose an agent model for Language-Driven Zero-Shot Object Navigation (L-ZSON) tasks, which takes in a freeform language description of an unseen target object and navigates to find out the target object in an inexperienced environment. In general, an L-ZSON agent should able to visually ground the target object by understanding the freeform language description of it and recognizing the corresponding visual object in camera images. Moreover, the L-ZSON agent should be also able to build a rich spatial context map over the unknown environment and decide efficient exploration actions based on the map until the target object is present in the field of view. To address these challenging issues, we proposes AML (Agent Model for L-ZSON), a novel L-ZSON agent model to make effective use of AI foundation models such as Large Language Model (LLM) and Vision-Language model (VLM). In order to tackle the visual grounding issue of the target object description, our agent model employs GLEE, a VLM pretrained for locating and identifying arbitrary objects in images and videos in the open world scenario. To meet the exploration policy issue, the proposed agent model leverages the commonsense knowledge of LLM to make sequential navigational decisions. By conducting various quantitative and qualitative experiments with RoboTHOR, the 3D simulation platform and PASTURE, the L-ZSON benchmark dataset, we show the superior performance of the proposed agent model.

An Ontology-based Generation of Operating Procedures for Boiler Shutdown : Knowledge Representation and Application to Operator Training (온톨로지 기반의 보일러 셧다운 절차 생성 : 지식표현 및 훈련시나리오 활용)

  • Park, Myeongnam;Kim, Tae-Ok;Lee, Bongwoo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.47-61
    • /
    • 2017
  • The preconditions of the usefulness of an operator safety training model in large plants are the versatility and accuracy of operational procedures, obtained by detailed analysis of the various types of risks associated with the operation, and the systematic representation of knowledge. In this study, we consider the artificial intelligence planning method for the generation of operation procedures; classify them into general actions, actions and technical terms of the operator; and take into account the sharing and reuse of knowledge, defining a knowledge expression ontology. In order to expand and extend the general operations of the operation, we apply a Hierarchical Task Network (HTN). Actual boiler plant case studies are classified according to operating conditions, states and operating objectives between the units, and general emergency shutdown procedures are created to confirm the applicability of the proposed method. These results based on systematic knowledge representation can be easily applied to general plant operation procedures and operator safety training scenarios and will be used for automatic generation of safety training scenarios.