기계 독해 기술은 기계가 주어진 비정형 문서 내에서 사용자의 질문을 이해하여 답변을 하는 기술로써, 챗봇이나 스마트 스피커 등, 사용자 질의응답 분야에서 핵심이 되는 기술 중 하나이다. 최근 딥러닝을 이용한 기학습 언어모델과 전이학습을 통해 사람의 기계 독해 능력을 뛰어넘는 방법론들이 제시되었다. 하지만 이러한 방식은 사람이 인식하는 질의응답 방법과 달리, 개체가 가지는 의미론(Semantic) 관점보다는 토큰 단위로 분리된 개체의 형태(Syntactic)와 등장하는 문맥(Context)에 의존해 기계 독해를 수행하였다. 본 논문에서는 기존의 높은 성능을 나타내던 기학습 언어모델에 대규모 지식그래프에 등장하는 개체 정보를 함께 학습함으로써, 의미학적 정보를 반영하는 방법을 제시한다. 본 논문이 제시하는 방법을 통해 기존 방법보다 기계 독해 분야에서 높은 성능향상 결과를 얻을 수 있었다.
Currently, many universities are implementing software-oriented universities and artificial intelligence-oriented universities to foster software-oriented manpower. We are educating students to design and produce computational thinking and coding directly with their major knowledge. However, computer education is not easy for non-majors, and there are many difficulties in coding. The results of responses from 104 students from the College of Health Sciences and College of Social Management who took the liberal arts computer at University H were analyzed using SPSS 26.0 version. In the liberal arts computer class for non-majors, a PJBL-based class plan was proposed. The effectiveness of PJBL-based classes was confirmed through a questionnaire for the improvement of artificial intelligence liberal arts courses. As a result, PJBL-based education showed statistically significant results in terms of satisfaction, effectiveness, and self-efficiency of classes regardless of major.
This paper introduces the technological development trends in on-device SLMs (Small Language Models). Large Language Models (LLMs) based on the transformer model have gained global attention with the emergence of ChatGPT, providing detailed and sophisticated responses across various knowledge domains, thereby increasing their impact across society. While major global tech companies are continuously announcing new LLMs or enhancing their capabilities, the development of SLMs, which are lightweight versions of LLMs, is intensely progressing. SLMs have the advantage of being able to run as on-device AI on smartphones or edge devices with limited memory and computing resources, enabling their application in various fields from a commercialization perspective. This paper examines the technical features for developing SLMs, lightweight technologies, semiconductor technology development trends for on-device AI, and potential applications across various industries.
인공지능 기술의 발전은 사회의 구조와 교육환경을 변화시키며, 인공지능 역량의 중요성이 지속적으로 증가하고 있다. 이에 본 연구는 초등학생의 AI 역량 측정을 위한 체크리스트 문항을 개발하는 목적으로 수행되었다. 연구의 목적을 달성하기 위해서 문헌 분석과 문항개발 델파이 조사를 사용하였다. 문헌 분석을 위해 검색을 통해 국내 연구 2편, 국외 연구 5편, 교육부의 교육과정 보고서를 수집하였다. 수집된 자료를 분석해서 핵심역량 측정 요소를 구성하였다. 핵심역량 측정 요소는 인공지능의 이해(6개 요소), 인공지능 사고(4개 요소), 인공지능 윤리(4개 요소), 인공지능 사회-정서(3개 요소)로 구성하였다. 구성된 측정 요소의 지식과 기능 그리고 태도를 고려하여, 19개 문항을 개발하였다. 개발된 문항은 1차 델파이 조사를 통해서 검증하였고, 수정의견에 따라 7개의 문항을 수정하였다. 2차 델파이 조사를 통해서 19개 문항의 타당성을 검증하였다. 본 연구에서 개발한 체크리스트 문항은 자기보고식 설문이 아닌 수행 및 행동 관찰을 기반으로 교사의 평가에 의해서 측정된다. 이에 역량의 측정 결과가 신뢰할 수 있는 수준으로 높아진다는 시사점을 가지고 있다.
본 연구는 중학생의 AI 역량 측정을 위한 체크리스트 문항을 개발하는 목적으로 수행되었다. 연구의 목적을 달성하기 위해서 문헌 분석과 문항개발 델파이 조사를 사용하였다. 문헌 분석을 위해 검색을 통해 국내 연구 2편, 국외 연구 5편, 교육부의 교육과정 보고서를 수집하였다. 수집된 자료를 분석해서 핵심역량 측정 요소를 구성하였다. 핵심역량 측정 요소는 인공지능의 이해(5개 요소), 인공지능 사고(5개 요소), 인공지능 활용(4개 요수), 인공지능 윤리(6개 요소), 인공지능 사회-정서(6개 요소)로 구성하였다. 구성된 측정 요소의 지식과 기능 그리고 태도를 고려하여, 31개 문항을 개발하였다. 개발된 문항은 1차 델파이 조사를 통해서 검증하였고, 수정의견에 따라 10개의 문항을 수정하였다. 2차 델파이 조사를 통해서 31개 문항의 타당성을 검증하였다. 본 연구에서 개발한 체크리스트 문항은 자기보고식 설문이 아닌 수행 및 행동 관찰을 기반으로 교사의 평가에 의해서 측정된다. 이에 측정 결과가 신뢰할 수 있는 수준이 높아진다는 시사점을 가지고 있다.
보통의 인공지능 시스템은 특정 작업을 수행하기 위해 설계되며, 해당 작업만을 수행하는 능력을 가진다. 그에 반해 인공 일반지능이란 설계 당시 목표로 한 작업만이 아니라 새로 접하는 다양한 문제에도 대응할 수 있는 인공지능을 의미한다. 최근 게임 인공지능 분야의 일반지능 문제인 General Video Game Playing에 대한 관심이 높아지고 있다. 비디오 게임으로 범위가 제한되었지만, 다양한 형태의 비디오 게임을 플레이 할 수 있는 단일 인공지능을 설계하는 것은 상당히 도전적인 문제이다. 본 논문에서는 Monte-Carlo Tree Search를 이용하는 기존 비디오 게임을 위한 인공 일반지능을 개선하는 방법에 대해 기술한다. 여기서는 UCB1 알고리즘을 문제에 적합하도록 개선한 GreedyUCB1과 게임 분석을 통해 얻은 지식을 활용한 Rollout 방법을 제안한다. 제안한 방법으로 개발된 인공지능은 국제 학술대회인 IEEE Computational Intelligence in Games의 2014년 인공지능 경진 대회에 출전하여 4위의 성적을 보였다.
Purpose: Recent advancements in artificial intelligence (AI), particularly tools such as ChatGPT developed by OpenAI, a U.S.-based AI research organization, have transformed the healthcare and education sectors. This study investigated the effectiveness of ChatGPT in answering dentistry exam questions, demonstrating its potential to enhance professional practice and patient care. Materials and Methods: This study assessed the performance of ChatGPT 3.5 and 4 on U.S. dental exams - specifically, the Integrated National Board Dental Examination (INBDE), Dental Admission Test (DAT), and Advanced Dental Admission Test (ADAT) - excluding image-based questions. Using customized prompts, ChatGPT's answers were evaluated against official answer sheets. Results: ChatGPT 3.5 and 4 were tested with 253 questions from the INBDE, ADAT, and DAT exams. For the INBDE, both versions achieved 80% accuracy in knowledge-based questions and 66-69% in case history questions. In ADAT, they scored 66-83% in knowledge-based and 76% in case history questions. ChatGPT 4 excelled on the DAT, with 94% accuracy in knowledge-based questions, 57% in mathematical analysis items, and 100% in comprehension questions, surpassing ChatGPT 3.5's rates of 83%, 31%, and 82%, respectively. The difference was significant for knowledge-based questions(P=0.009). Both versions showed similar patterns in incorrect responses. Conclusion: Both ChatGPT 3.5 and 4 effectively handled knowledge-based, case history, and comprehension questions, with ChatGPT 4 being more reliable and surpassing the performance of 3.5. ChatGPT 4's perfect score in comprehension questions underscores its trainability in specific subjects. However, both versions exhibited weaker performance in mathematical analysis, suggesting this as an area for improvement.
Since Traditional Korean medicine (TKM) doctors use various knowledge systems during treatment, diagnosis results may differ for each TKM doctor. However, it is difficult to explain all the reasons for the diagnosis because TKM doctors use both explicit and implicit knowledge. In this study, an upgraded random forest (RF)-based evaluation tool was proposed to extract clinical knowledge of TKM doctors. Also, it was confirmed to what extent the professor's clinical knowledge was delivered to the trainees by using the evaluation tool. The data used to construct the evaluation tool were targeted at 106 people who visited the Sasang Constitutional Department at Kyung Hee University Korean Medicine Hospital at Gangdong. For explicit knowledge extraction, four TKM doctors were asked to express the importance of symptoms as scores. In addition, for implicit knowledge extraction, importance score was confirmed in the RF model that learned the patient's symptoms and the TKM doctor's constitutional determination results. In order to confirm the delivery of clinical knowledge, the similarity of symptoms that professors and trainees consider important when discriminating constitution was calculated using the Jaccard coefficient. As a result of the study, our proposed tool was able to successfully evaluate the clinical knowledge of TKM doctors. Also, it was confirmed that the professor's clinical knowledge was delivered to the trainee. Our tool can be used in various fields such as providing feedback on treatment, education of training TKM doctors, and development of AI in TKM.
Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.
Journal of Information Technology Applications and Management
/
제30권5호
/
pp.141-158
/
2023
In the field of animation, as technology advances, production technology, production methods, and production culture are also steadily developing. The demand for content is increasing rapidly around the OTT platform, and the demand for animation content and diversity is increasing. With these market changes, animation creation ability is becoming a more important animation education goal. There is also a need to innovate educational methods to provide students with the skills and knowledge required in the modern animation business. This paper investigated the composition of the educational curriculum of domestic and foreign animation universities education. It examines artificial intelligence (AI) technology that can be used in animation creation and explores the design and direction of the university animation curriculum using it. AI technology has already proven its potential in various areas, and it is integrated into the animation curriculum to present various development potentials. Using AI technology, students can focus on practical and essential animation education by preventing technical difficulties in animation creation, increase their experience in animation production, and experiment with planning and producing various contents. It is proposed to design an educational curriculum that further strengthens animation creation and production capabilities by forming smart animation classes to foster talents who can lead the future animation industry in a new direction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.