• Title/Summary/Keyword: AI finance

Search Result 45, Processing Time 0.021 seconds

A Comprehensive Review of AI Security: Threats, Challenges, and Mitigation Strategies

  • Serdar Yazmyradov;Hoon Jae Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.375-384
    • /
    • 2024
  • As Artificial Intelligence (AI) continues to permeate various sectors such as healthcare, finance, and transportation, the importance of securing AI systems against emerging threats has become increasingly critical. The proliferation of AI across these industries not only introduces opportunities for innovation but also exposes vulnerabilities that could be exploited by malicious actors. This comprehensive review delves into the current landscape of AI security, providing an in-depth analysis of the threats, challenges, and mitigation strategies associated with AI technologies. The paper discusses key threats such as adversarial attacks, data poisoning, and model inversion, all of which can severely compromise the integrity, confidentiality, and availability of AI systems. Additionally, the paper explores the challenges posed by the inherent complexity and opacity of AI models, particularly deep learning networks. The review also evaluates various mitigation strategies, including adversarial training, differential privacy, and federated learning, that have been developed to safeguard AI systems. By synthesizing recent advancements and identifying gaps in existing research, this paper aims to guide future efforts in enhancing the security of AI applications, ultimately ensuring their safe and ethical deployment in both critical and everyday environments.

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

Critical Factors Affecting the Adoption of Artificial Intelligence: An Empirical Study in Vietnam

  • NGUYEN, Thanh Luan;NGUYEN, Van Phuoc;DANG, Thi Viet Duc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.225-237
    • /
    • 2022
  • The term "artificial intelligence" is considered a component of sophisticated technological developments, and several intelligent tools have been developed to assist organizations and entrepreneurs in making business decisions. Artificial intelligence (AI) is defined as the concept of transforming inanimate objects into intelligent beings that can reason in the same way that humans do. Computer systems can imitate a variety of human intelligence activities, including learning, reasoning, problem-solving, speech recognition, and planning. This study's objective is to provide responses to the questions: Which factors should be taken into account while deciding whether or not to use AI applications? What role do these elements have in AI application adoption? However, this study proposes a framework to explore the significance and relation of success factors to AI adoption based on the technology-organization-environment model. Ten critical factors related to AI adoption are identified. The framework is empirically tested with data collected by mail surveying organizations in Vietnam. Structural Equation Modeling is applied to analyze the data. The results indicate that Technical compatibility, Relative advantage, Technical complexity, Technical capability, Managerial capability, Organizational readiness, Government involvement, Market uncertainty, and Vendor partnership are significantly related to AI applications adoption.

A Study on the Development Strategy of Artificial Intelligence Technology Using Multi-Attribute Weighted Average Method (다요소 가중 평균법을 이용한 인공지능 기술 개발전략 연구)

  • Chang, Hae Gak;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.93-107
    • /
    • 2020
  • Recently, artificial intelligence (AI) technologies has been widely used in various fields such as finance, and distribution. Accordingly, Korea has also announced its AI R&D strategy for the realization of i-Korea 4.0 in May 2018. However, Korea's AI technology is inferior to major competitors such as the US, Canada, and Japan Therefore, in order to cope with the 4th industrial revolution, it is necessary to allocate AI R&D budgets efficiently through selection and concentration so as to gain competitive advantage under a limited budget. In this study, the importance of each AI technology was evaluated in multi-dimensional way through the questionnaire of expert group using the evaluation index derived from the literature review From the results of this study, we draw the following implication. In order to successfully establish the AI technology development strategies, it is necessary to prioritize the cognitive computing technology that has great market growth potential, ripple effect of technology development, and the urgency of technology development according to the principle of selection and concentration. To this end, it is necessary to find creative ideas, manage assessments, converge multidisciplinary systems and strengthen core competencies. In addition, since AI technology has a large impact on socioeconomic development, it is necessary to comprehensively grasp and manage scientific and technological regulations in order to systematically promote AI technology development.

P-Triple Barrier Labeling: Unifying Pair Trading Strategies and Triple Barrier Labeling Through Genetic Algorithm Optimization

  • Ning Fu;Suntae Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.111-118
    • /
    • 2023
  • In the ever-changing landscape of finance, the fusion of artificial intelligence (AI)and pair trading strategies has captured the interest of investors and institutions alike. In the context of supervised machine learning, crafting precise and accurate labels is crucial, as it remains a top priority to empower AI models to surpass traditional pair trading methods. However, prevailing labeling techniques in the financial sector predominantly concentrate on individual assets, posing a challenge in aligning with pair trading strategies. To address this issue, we propose an inventive approach that melds the Triple Barrier Labeling technique with pair trading, optimizing the resultant labels through genetic algorithms. Rigorous backtesting on cryptocurrency datasets illustrates that our proposed labeling method excels over traditional pair trading methods and corresponding buy-and-hold strategies in both profitability and risk control. This pioneering method offers a novel perspective on trading strategies and risk management within the financial domain, laying a robust groundwork for further enhancing the precision and reliability of pair trading strategies utilizing AI models.

Application of AI-based Customer Segmentation in the Insurance Industry

  • Kyeongmin Yum;Byungjoon Yoo;Jaehwan Lee
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.496-513
    • /
    • 2022
  • Artificial intelligence or big data technologies can benefit finance companies such as those in the insurance sector. With artificial intelligence, companies can develop better customer segmentation methods and eventually improve the quality of customer relationship management. However, the application of AI-based customer segmentation in the insurance industry seems to have been unsuccessful. Findings from our interviews with sales agents and customer service managers indicate that current customer segmentation in the Korean insurance company relies upon individual agents' heuristic decisions rather than a generalizable data-based method. We propose guidelines for AI-based customer segmentation for the insurance industry, based on the CRISP-DM standard data mining project framework. Our proposed guideline provides new insights for studies on AI-based technology implementation and has practical implications for companies that deploy algorithm-based customer relationship management systems.

Examining the Generative Artificial Intelligence Landscape: Current Status and Policy Strategies

  • Hyoung-Goo Kang;Ahram Moon;Seongmin Jeon
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.150-190
    • /
    • 2024
  • This article proposes a framework to elucidate the structural dynamics of the generative AI ecosystem. It also outlines the practical application of this proposed framework through illustrative policies, with a specific emphasis on the development of the Korean generative AI ecosystem and its implications of platform strategies at AI platform-squared. We propose a comprehensive classification scheme within generative AI ecosystems, including app builders, technology partners, app stores, foundational AI models operating as operating systems, cloud services, and chip manufacturers. The market competitiveness for both app builders and technology partners will be highly contingent on their ability to effectively navigate the customer decision journey (CDJ) while offering localized services that fill the gaps left by foundational models. The strategically important platform of platforms in the generative AI ecosystem (i.e., AI platform-squared) is constituted by app stores, foundational AIs as operating systems, and cloud services. A few companies, primarily in the U.S. and China, are projected to dominate this AI platform squared, and consequently, they are likely to become the primary targets of non-market strategies by diverse governments and communities. Korea still has chances in AI platform-squared, but the window of opportunities is narrowing. A cautious approach is necessary when considering potential regulations for domestic large AI models and platforms. Hastily importing foreign regulatory frameworks and non-market strategies, such as those from Europe, could overlook the essential hierarchical structure that our framework underscores. Our study suggests a clear strategic pathway for Korea to emerge as a generative AI powerhouse. As one of the few countries boasting significant companies within the foundational AI models (which need to collaborate with each other) and chip manufacturing sectors, it is vital for Korea to leverage its unique position and strategically penetrate the platform-squared segment-app stores, operating systems, and cloud services. Given the potential network effects and winner-takes-all dynamics in AI platform-squared, this endeavor is of immediate urgency. To facilitate this transition, it is recommended that the government implement promotional policies that strategically nurture these AI platform-squared, rather than restrict them through regulations and stakeholder pressures.

An Application of RASA Technology to Design an AI Virtual Assistant: A Case of Learning Finance and Banking Terms in Vietnamese

  • PHAM, Thi My Ni;PHAM, Thi Ngoc Thao;NGUYEN, Ha Phuong Truc;LY, Bao Tuyen;NGUYEN, Truc Linh;LE, Hoanh Su
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • Banking and finance is a broad term that incorporates a variety of smaller, more specialized subjects such as corporate finance, tax finance, and insurance finance. A virtual assistant that assists users in searching for information about banking and finance terms might be an extremely beneficial tool for users. In this study, we explored the process of searching for information, seeking opportunities, and developing a virtual assistant in the first stages of starting learning and understanding Vietnamese to increase effectiveness and save time, which is also an innovative business practice in Use-case Vietnam. We built the FIBA2020 dataset and proposed a pipeline that used Natural Language Processing (NLP) inclusive of Natural Language Understanding (NLU) algorithms to build chatbot applications. The open-source framework RASA is used to implement the system in our study. We aim to improve our model performance by replacing parts of RASA's default tokenizers with Vietnamese tokenizers and experimenting with various language models. The best accuracy we achieved is 86.48% and 70.04% in the ideal condition and worst condition, respectively. Finally, we put our findings into practice by creating an Android virtual assistant application using the model trained using Whitespace tokenizer and the pre-trained language m-BERT.

A Study on the Explainability of Inception Network-Derived Image Classification AI Using National Defense Data (국방 데이터를 활용한 인셉션 네트워크 파생 이미지 분류 AI의 설명 가능성 연구)

  • Kangun Cho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.256-264
    • /
    • 2024
  • In the last 10 years, AI has made rapid progress, and image classification, in particular, are showing excellent performance based on deep learning. Nevertheless, due to the nature of deep learning represented by a black box, it is difficult to actually use it in critical decision-making situations such as national defense, autonomous driving, medical care, and finance due to the lack of explainability of judgement results. In order to overcome these limitations, in this study, a model description algorithm capable of local interpretation was applied to the inception network-derived AI to analyze what grounds they made when classifying national defense data. Specifically, we conduct a comparative analysis of explainability based on confidence values by performing LIME analysis from the Inception v2_resnet model and verify the similarity between human interpretations and LIME explanations. Furthermore, by comparing the LIME explanation results through the Top1 output results for Inception v3, Inception v2_resnet, and Xception models, we confirm the feasibility of comparing the efficiency and availability of deep learning networks using XAI.

Study on Intelligence (AI) Detection Model about Telecommunication Finance Fraud Accident (전기통신금융사기 사고에 대한 이상징후 지능화(AI) 탐지 모델 연구)

  • Jeong, Eui-seok;Lim, Jong-in
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.149-164
    • /
    • 2019
  • Digital Transformation and the Fourth Industrial Revolution, electronic financial services should be provided safely in accordance with rapidly changing technology changes in the times of change. However, telecommunication finance fraud (voice phishing) accidents are currently ongoing, and various efforts are being made to eradicate accidents such as legal amendment and improvement of policy system in order to cope with continuous increase, intelligence and advancement of accidents. In addition, financial institutions are trying to prevent fraudulent accidents by improving and upgrading the abnormal financial transaction detection system, but the results are not very clear. Despite these efforts, telecommunications and financial fraud incidents have evolved to evolve against countermeasures. In this paper, we propose an intelligent over - the - counter financial transaction system modeled through scenario - based Rule model and artificial intelligence algorithm to prevent financial transaction accidents by voice phishing. We propose an implementation model of artificial intelligence abnormal financial transaction detection system and an optimized countermeasure model that can block and respond to analysis and detection results.