• Title/Summary/Keyword: AI evolutionary stage

Search Result 3, Processing Time 0.018 seconds

Technical Trends of Medical AI Hubs (의료 AI 중추 기술 동향)

  • Choi, J.H.;Park, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.81-88
    • /
    • 2021
  • Post COVID-19, the medical legacy system will be transformed for utilizing medical resources efficiently, minimizing medical service imbalance, activating remote medical care, and strengthening private-public medical cooperation. This can be realized by achieving an entire medical paradigm shift and not simply via the application of advanced technologies such as AI. We propose a medical system configuration named "Medical AI Hub" that can realize the shift of the existing paradigm. The development stage of this configuration is categorized into "AI Cooperation Hospital," "AI Base Hospital," and "AI Hub Hospital." In the "AI Hub Hospital" stage, the medical intelligence in charge of individual patients cooperates and communicates autonomously with various medical intelligences, thereby achieving synchronous evolution. Thus, this medical intelligence supports doctors in optimally treating patients. The core technologies required during configuration development and their current R&D trends are described in this paper. The realization of the central configuration of medical AI through the development of these core technologies will induce a paradigm shift in the new medical system by innovating all medical fields with influences at the individual, society, industry, and public levels and by making the existing medical system more efficient and intelligent.

Current Status of Development and Practice of Artificial Intelligence Solutions for Digital Transformation of Fashion Manufacturers (패션 제조 기업의 디지털 트랜스포메이션을 위한 인공지능 솔루션 개발 및 활용 현황)

  • Kim, Ha Youn;Choi, Woojin;Lee, Yuri;Jang, Seyoon
    • Journal of Fashion Business
    • /
    • v.26 no.2
    • /
    • pp.28-47
    • /
    • 2022
  • Rapid development of information and communication technology is leading the digital transformation (hereinafter, DT) of various industries. At this point in rapid online transition, fashion manufacturers operating offline-oriented businesses have become highly interested in DT and artificial intelligence (hereinafter AI), which leads DT. The purpose of this study is to examine the development status and application case of AI-based digital technology developed for the fashion industry, and to examine the DT stage and AI application status of domestic fashion manufacturers. Hence, in-depth interviews were conducted with five domestic IT companies developing AI technology for the fashion industry and six domestic fashion manufacturers applying AI technology. After analyzing interviews, study results were as follows: The seven major AI technologies leading the DT of the fashion industry were fashion image recognition, trend analysis, prediction & visualization, automated fashion design generation, demand forecast & optimizing inventory, optimizing logistics, curation, and ad-tech. It was found that domestic fashion manufacturers were striving for innovative changes through DT although the DT stage varied from company to company. This study is of academic significance as it organized technologies specialized in fashion business by analyzing AI-based digitization element technologies that lead DT in the fashion industry. It is also expected to serve as basic study when DT and AI technology development are applied to the fashion field so that traditional domestic fashion manufacturers showing low growth can rise again.

WATER MASERS FROM THE PROTOSTELLAR DISK AND OUTFLOW IN THE NGC 1333 IRAS 4 REGION

  • Park, Geum-Sook;Choi, Min-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.123-125
    • /
    • 2007
  • NGC 1333 is a nearby star forming region, and IRAS 4A and IRAS 4BI are low-mass Class 0 protostars. IRAS 4A is a protobinary system. The NGC 1333 IRAS 4 region was observed in the 22 GHz water maser with a high resolution (0.08") using the Very Large Array. Two groups of masers were detected: one near A2 and the other near BI. Most of the masers associated with A2 are located very close (< 100 AU) to the radio continuum source. They may be associated with the circumstellar disk. Since no maser was detected near AI, the A2 disk is relatively more active than the Al disk. Most of the masers in the BI region are distributed along a straight line, and they are probably related with the outflow. As in many other water maser sources, the IRAS 4 water masers seem to trace selectively either the disk or the outflow. Considering the outflow lifetimes, the disk-outflow dichotomy is probably unrelated with the evolutionary stage of protostars. A possible explanation may be that both the outflow-maser and the disk-maser are rare phenomena and that detecting both kinds of maser around a single protostar may be even rarer.