• 제목/요약/키워드: AI dataset

검색결과 257건 처리시간 0.024초

OP Code 특징 기반의 텍스트와 이미지 데이터셋 연구를 통한 인공지능 백신 개발 (Development of Vaccine with Artificial Intelligence: By Analyzing OP Code Features Based on Text and Image Dataset)

  • 최효경;이세은;이주현;홍래영;최원혁;김형종
    • 정보보호학회논문지
    • /
    • 제29권5호
    • /
    • pp.1019-1026
    • /
    • 2019
  • 지속적으로 새롭게 등장하는 악성 파일(malware)탐지의 어려움으로 인해 머신러닝 기반 인공지능 백신 개발의 중요성이 크게 대두되고 있다. 하지만 현존하는 인공지능 백신은 파일의 일부 영역만을 검사하기 때문에 탐지율이 떨어진다는 단점이 존재한다. 이에 본 논문에서는 독자적인 로직을 기반으로 개발한 인공지능 백신에 근거하여, 파일 내 전체 데이터를 검사하는 방법을 제안한다. 그 중 정상 파일과 비교했을 때 악성 파일에만 존재하는 unique한 함수에서 추출한 OP Code 특징을 학습 데이터셋으로 한 진단법 강화 방안을 제시한다. 해당 강화법의 성능을 Random Forest 알고리즘을 기반으로 한 CSV 데이터셋 학습과 Inception V3 모델을 기반으로 한 이미지 데이터셋 학습으로 나누어 테스트해본 결과, 약 80%의 탐지율을 도출하는 것을 확인할 수 있었다.

새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법 (A New Head Pose Estimation Method based on Boosted 3-D PCA)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.105-109
    • /
    • 2021
  • 본 논문에서는 Boosted 3-D PCA 방법을 데이터 세트로 평가하고 성능을 평가한다. 그런 다음 네트워크의 특징과 성능을 분석하겠습니다. 본 논문에서는 Boosted 3-D PCA 학습방법을 사용하여 300W-LP 데이터 학습을 수행했으며 AFLW2000 데이터 세트를 사용하여 평가를 평가했다. 결과는 이 성능 결과는 기존 랜드마크 대 포즈 방법보다 자유롭게 얼굴 이미지의 데이터 세트를 사용하여 학습할 수 있으므로 실제 상황에서 포즈를 정확하게 예측할 수 있다. 키포인트 세트의 최적화는 독립적이지 않기 때문에, 우리는 계산 시간을 줄일 방법을 확인했다. 이 방법은 Boosted 3-D PCA 성능을 향상시키거나 다양한 애플리케이션 도메인에 적용하는 데 매우 중요한 자원이 될 것으로 예상한다

재난안전관리 과학기술 네트워크: 전문가 수요조사를 중심으로 (Science and Technology Networks for Disaster and Safety Management: Based on Expert Survey Data)

  • 허정은;양창훈
    • 한국콘텐츠학회논문지
    • /
    • 제18권11호
    • /
    • pp.123-134
    • /
    • 2018
  • 최근 국가적 재난사고의 발생으로 인해 재난안전문제의 근원적 해결을 위한 과학기술의 활용과 역할에 대한 연구 관심이 증대되고 있다. 이에 재난 유형이나 재난안전 관리 단계별로 국민의 안전기본권 확보, 효과적 대응을 위한 기술개발 분야 발굴, 관련 R&D 투자의 효율적 방향 모색 등의 필요성도 크게 대두되고 있다. 본 연구에서는 네트워크 분석을 기반으로 과학기술을 통해 우선적으로 해결이 필요한 재난 유형 및 재난안전 관리 단계는 무엇인지 그리고 재난안전문제 해결을 위해서는 어떤 기술개발이 필요한지를 분석하였다. 전문가 수요조사에 대한 네트워크 분석 결과, 사회재난인 화재와 자연재난인 지진에 대한 우리사회의 불안감이 가장 큰 것으로 나타났으며, 대부분의 재난 유형에 공통적으로 요구되거나 재난 상황에 따라 응용 가능성이 높은 기술개발 분야는 인공지능과 빅데이터 분석인 것으로 조사되었다. 본 연구는 재난안전과 기술 분야 간 연결망 구조를 구축한 후 그 연계 속성이 갖는 구조적 특성을 탐색하고, 나아가 재난안전 과학기술의 역할 강화를 위한 함의를 제시하였다.

딥러닝 스타일 전이 기반의 무대 탐방 콘텐츠 생성 기법 (Generation of Stage Tour Contents with Deep Learning Style Transfer)

  • 김동민;김현식;봉대현;최종윤;정진우
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1403-1410
    • /
    • 2020
  • 최근, 비대면 경험 및 서비스에 관한 관심이 증가하면서 스마트폰이나 태블릿과 같은 모바일 기기를 이용하여 손쉽게 이용할 수 있는 웹 동영상 콘텐츠에 대한 수요가 급격히 증가하고 있다. 이와 같은 요구사항에 대응하기 위하여, 본 논문에서는 애니메이션이나 영화에 등장하는 명소를 방문하는 무대 탐방 경험을 제공할 수 있는 영상 콘텐츠를 보다 효율적으로 제작하기 위한 기법을 제안한다. 이를 위하여, Google Maps와 Google Street View API를 이용하여 무대탐방 지역에 해당하는 이미지를 수집하여 이미지 데이터셋을 구축하였다. 그 후, 딥러닝 기반의 style transfer 기술을 접목시켜 애니메이션의 독특한 화풍을 실사 이미지에 적용한 후 동영상화하기 위한 방법을 제시하였다. 마지막으로, 다양한 실험을 통해 제안하는 기법을 이용하여 보다 재미있고 흥미로운 형태의 무대탐방 영상 콘텐츠를 생성할 수 있음을 보였다.

유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구 (Research on Deep Learning Performance Improvement for Similar Image Classification)

  • 임동진;김태홍
    • 한국콘텐츠학회논문지
    • /
    • 제21권8호
    • /
    • pp.1-9
    • /
    • 2021
  • 딥 러닝을 활용한 컴퓨터 비전 연구는 여전히 대규모의 학습 데이터와 컴퓨팅 파워가 필수적이며, 최적의 네트워크 구조를 도출하기 위해 많은 시행착오가 수반된다. 본 연구에서는 네트워크 최적화나 데이터를 보강하는 것과 무관하게 데이터 자체의 특성만을 고려한 CR(Confusion Rate)기반의 유사 이미지 분류 성능 향상 기법을 제안한다. 제안 방법은 유사한 이미지 데이터를 정확히 분류하기 위해 CR을 산출하고 이를 손실 함수의 가중치에 반영함으로서 딥 러닝 모델의 성능을 향상시키는 기법을 제안한다. 제안 방법은 네트워크 최적화 결과와 독립적으로 이미지 분류 성능의 향상을 가져올 수 있으며, 클래스 간의 유사성을 고려해 유사도가 높은 이미지 식별에 적합하다. 제안 방법의 평가결과 HanDB에서는 0.22%, Animal-10N에서는 3.38%의 성능향상을 보였다. 제안한 방법은 다양한 Noisy Labeled 데이터를 활용한 인공지능 연구에 기반이 될 것을 기대한다.

객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구 (Research on Human Posture Recognition System Based on The Object Detection Dataset)

  • 유암;리라이춘;루징쉬엔;쉬멍;정양권
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.111-118
    • /
    • 2022
  • 컴퓨터 비전 연구에서 2차원 인체 자세는 매우 광범위한 연구 방향으로 특히 자세 추적과 행동 인식에서 유의미한 분야다. 인체 자세 표적 획득은 이미지에서 인체 목표를 정확히 찾는 방법을 연구하는 것이 핵심이며 인체 자세 인식은 인공지능(AI)에 적용하는 한편 일상생활에 활용되고 있어서 매우 중요한 연구의의가 있다. 인체 자세 인식 효과의 우수성의 기준은 인식 과정의 성공률과 정확도에 의해 결정된다. 본 연구의 인체 자세 인식에서는 딥러닝 전용 데이터셋인 MS COCO를 기반하여 인체를 17개의 키 포인트로 구분하였다. 다음으로 주요 특징에 대한 세분화 마스크(segmentation mask) 방법을 사용하여 인식률을 개선하였다. 최종적으로 신경망 모델을 설계하고 간단한 단계별 학습부터 효율적인 학습에 이르기까지 많은 수의 표본을 학습시키는 알고리즘을 제안하여 정확도를 향상할 수 있었다.

Radionuclide identification method for NaI low-count gamma-ray spectra using artificial neural network

  • Qi, Sheng;Wang, Shanqiang;Chen, Ye;Zhang, Kun;Ai, Xianyun;Li, Jinglun;Fan, Haijun;Zhao, Hui
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.269-274
    • /
    • 2022
  • An artificial neural network (ANN) that identifies radionuclides from low-count gamma spectra of a NaI scintillator is proposed. The ANN was trained and tested using simulated spectra. 14 target nuclides were considered corresponding to the requisite radionuclide library of a radionuclide identification device mentioned in IEC 62327-2017. The network shows an average identification accuracy of 98.63% on the validation dataset, with the gross counts in each spectrum Nc = 100~10000 and the signal to noise ratio SNR = 0.05-1. Most of the false predictions come from nuclides with low branching ratio and/or similar decay energies. If the Nc>1000 and SNR>0.3, which is defined as the minimum identifiable condition, the averaged identification accuracy is 99.87%. Even when the source and the detector are covered with lead bricks and the response function of the detector thus varies, the ANN which was trained using non-shielding spectra still shows high accuracy as long as the minimum identifiable condition is satisfied. Among all the considered nuclides, only the identification accuracy of 235U is seriously affected by the shielding. Identification of other nuclides shows high accuracy even the shielding condition is changed, which indicates that the ANN has good generalization performance.

순환 적대적 생성 신경망을 이용한 안면 교체를 위한 새로운 이미지 처리 기법 (A New Image Processing Scheme For Face Swapping Using CycleGAN)

  • 반태원
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1305-1311
    • /
    • 2022
  • 최근 모바일 단말기 및 개인형 컴퓨터의 비약적인 발전과 신경망 기술의 등장으로 영상을 활용한 실시간 안면 교체가 가능해졌다. 특히, 순환 적대적 생성 신경망은 상호 연관성이 없는 이미지 데이터를 활용한 안면 교체가 가능하게 만들었다. 본 논문에서는 적은 학습 데이터와 시간으로 안면 교체의 품질을 높일 수 있는 입력 데이터 처리 기법을 제안한다. 제안 방식은 사전에 학습된 신경망을 통해서 추출된 안면의 특이점 정보와 안면의 구조와 표정에 영향을 미치는 주요 이미지 정보를 결합함으로써 안면 표정과 구조를 보존하면서 이미지 품질을 향상시킬 수 있다. 인공지능 기반의 무참조 품질 메트릭 중의 하나인 blind/referenceless image spatial quality evaluator (BRISQUE) 점수를 활용하여 제안 방식의 성능을 정량적으로 분석하고 기존 방식과 비교한다. 성능 분석 결과에 따르면 제안 방식은 기존 방식 대비 약 4.6%~14.6% 개선된 BRISQUE 점수를 나타내었다.

The Methodology of the Golf Swing Similarity Measurement Using Deep Learning-Based 2D Pose Estimation

  • Jonghyuk, Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.39-47
    • /
    • 2023
  • 본 논문에서는 골프 동영상 속 스윙 자세 사이의 유사도를 측정할 수 있는 방법을 제안한다. 딥러닝 기반 인공지능 기술이 컴퓨터 비전 분야에 효과적인 것이 알려지면서 동영상을 기반으로 한 스포츠 데이터 분석에 인공지능을 활용하기 위한 시도가 증가하고 있다. 본 연구에서는 딥러닝 기반의 자세 추정 모델을 사용하여 골프 스윙 동영상 속 사람의 관절 좌표를 획득하였고, 이를 바탕으로 각 스윙 구간별 유사도를 측정하였다. 제안한 방법의 평가를 위해 GolfDB 데이터셋의 Driver 스윙 동영상을 활용하였다. 총 36명의 선수에 대해 스윙 동영상들을 두 개씩 짝지어 스윙 유사도를 측정한 결과, 본인의 또 다른 스윙이 가장 유사하다고 평가한 경우가 26명이었으며, 이때의 유사도 평균 순위는 약 5위로 확인되었다. 이로부터 비슷한 동작을 수행하고 있는 경우에도 면밀히 유사도를 측정하는 것이 가능함을 확인할 수 있었다.

허밍: DeepJ 구조를 이용한 이미지 기반 자동 작곡 기법 연구 (Humming: Image Based Automatic Music Composition Using DeepJ Architecture)

  • 김태헌;정기철;이인성
    • 한국멀티미디어학회논문지
    • /
    • 제25권5호
    • /
    • pp.748-756
    • /
    • 2022
  • Thanks to the competition of AlphaGo and Sedol Lee, machine learning has received world-wide attention and huge investments. The performance improvement of computing devices greatly contributed to big data processing and the development of neural networks. Artificial intelligence not only imitates human beings in many fields, but also seems to be better than human capabilities. Although humans' creation is still considered to be better and higher, several artificial intelligences continue to challenge human creativity. The quality of some creative outcomes by AI is as good as the real ones produced by human beings. Sometimes they are not distinguishable, because the neural network has the competence to learn the common features contained in big data and copy them. In order to confirm whether artificial intelligence can express the inherent characteristics of different arts, this paper proposes a new neural network model called Humming. It is an experimental model that combines vgg16, which extracts image features, and DeepJ's architecture, which excels in creating various genres of music. A dataset produced by our experiment shows meaningful and valid results. Different results, however, are produced when the amount of data is increased. The neural network produced a similar pattern of music even though it was a different classification of images, which was not what we were aiming for. However, these new attempts may have explicit significance as a starting point for feature transfer that will be further studied.