• Title/Summary/Keyword: AI dataset

Search Result 225, Processing Time 0.032 seconds

Class Imbalance Resolution Method and Classification Algorithm Suggesting Based on Dataset Type Segmentation (데이터셋 유형 분류를 통한 클래스 불균형 해소 방법 및 분류 알고리즘 추천)

  • Kim, Jeonghun;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.23-43
    • /
    • 2022
  • In order to apply AI (Artificial Intelligence) in various industries, interest in algorithm selection is increasing. Algorithm selection is largely determined by the experience of a data scientist. However, in the case of an inexperienced data scientist, an algorithm is selected through meta-learning based on dataset characteristics. However, since the selection process is a black box, it was not possible to know on what basis the existing algorithm recommendation was derived. Accordingly, this study uses k-means cluster analysis to classify types according to data set characteristics, and to explore suitable classification algorithms and methods for resolving class imbalance. As a result of this study, four types were derived, and an appropriate class imbalance resolution method and classification algorithm were recommended according to the data set type.

Applying a Novel Neuroscience Mining (NSM) Method to fNIRS Dataset for Predicting the Business Problem Solving Creativity: Emphasis on Combining CNN, BiLSTM, and Attention Network

  • Kim, Kyu Sung;Kim, Min Gyeong;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.1-7
    • /
    • 2022
  • With the development of artificial intelligence, efforts to incorporate neuroscience mining with AI have increased. Neuroscience mining, also known as NSM, expands on this concept by combining computational neuroscience and business analytics. Using fNIRS (functional near-infrared spectroscopy)-based experiment dataset, we have investigated the potential of NSM in the context of the BPSC (business problem-solving creativity) prediction. Although BPSC is regarded as an essential business differentiator and a difficult cognitive resource to imitate, measuring it is a challenging task. In the context of NSM, appropriate methods for assessing and predicting BPSC are still in their infancy. In this sense, we propose a novel NSM method that systematically combines CNN, BiLSTM, and attention network for the sake of enhancing the BPSC prediction performance significantly. We utilized a dataset containing over 150 thousand fNIRS-measured data points to evaluate the validity of our proposed NSM method. Empirical evidence demonstrates that the proposed NSM method reveals the most robust performance when compared to benchmarking methods.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

Transfer Learning-based Generated Synthetic Images Identification Model (전이 학습 기반의 생성 이미지 판별 모델 설계)

  • Chaewon Kim;Sungyeon Yoon;Myeongeun Han;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.465-470
    • /
    • 2024
  • The advancement of AI-based image generation technology has resulted in the creation of various images, emphasizing the need for technology capable of accurately discerning them. The amount of generated image data is limited, and to achieve high performance with a limited dataset, this study proposes a model for discriminating generated images using transfer learning. Applying pre-trained models from the ImageNet dataset directly to the CIFAKE input dataset, we reduce training time cost followed by adding three hidden layers and one output layer to fine-tune the model. The modeling results revealed an improvement in the performance of the model when adjusting the final layer. Using transfer learning and then adjusting layers close to the output layer, small image data-related accuracy issues can be reduced and generated images can be classified.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Region of Interest Localization for Bone Age Estimation Using Whole-Body Bone Scintigraphy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Kang, Sae Ryung;Min, Jung Joon
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 2021
  • In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

Resource Metric Refining Module for AIOps Learning Data in Kubernetes Microservice

  • Jonghwan Park;Jaegi Son;Dongmin Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1545-1559
    • /
    • 2023
  • In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.

Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data

  • Bae, Ji-Hoon;Kim, Kyung-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.815-826
    • /
    • 2020
  • We propose a two-dimensional (2D) scattering-center-extraction (SCE) method using sparse recovery based on the compressive-sensing theory, even with data missing from the received radar cross-section (RCS) dataset. First, using the proposed method, we generate a 2D grid via adaptive discretization that has a considerably smaller size than a fully sampled fine grid. Subsequently, the coarse estimation of 2D scattering centers is performed using both the method of iteratively reweighted least square and a general peak-finding algorithm. Finally, the fine estimation of 2D scattering centers is performed using the orthogonal matching pursuit (OMP) procedure from an adaptively sampled Fourier dictionary. The measured RCS data, as well as simulation data using the point-scatterer model, are used to evaluate the 2D SCE accuracy of the proposed method. The results indicate that the proposed method can achieve higher SCE accuracy for an incomplete RCS dataset with missing data than that achieved by the conventional OMP, basis pursuit, smoothed L0, and existing discrete spectral estimation techniques.

Occlusion Robust Military Vehicle Detection using Two-Stage Part Attention Networks (2단계 부분 어텐션 네트워크를 이용한 가려짐에 강인한 군용 차량 검출)

  • Cho, Sunyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.381-389
    • /
    • 2022
  • Detecting partially occluded objects is difficult due to the appearances and shapes of occluders are highly variable. These variabilities lead to challenges of localizing accurate bounding box or classifying objects with visible object parts. To address these problems, we propose a two-stage part-based attention approach for robust object detection under partial occlusion. First, our part attention network(PAN) captures the important object parts and then it is used to generate weighted object features. Based on the weighted features, the re-weighted object features are produced by our reinforced PAN(RPAN). Experiments are performed on our collected military vehicle dataset and synthetic occlusion dataset. Our method outperforms the baselines and demonstrates the robustness of detecting objects under partial occlusion.