• Title/Summary/Keyword: AI dataset

Search Result 257, Processing Time 0.023 seconds

AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets (자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제)

  • Kana Kim;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.302-313
    • /
    • 2023
  • This paper aims to develop a framework that can fully automate the quality management of training data used in large-scale Artificial Intelligence (AI) models built by the Ministry of Science and ICT (MSIT) in the 'AI Hub Data Dam' project, which has invested more than 1 trillion won since 2017. Autonomous driving technology using AI has achieved excellent performance through many studies, but it requires a large amount of high-quality data to train the model. Moreover, it is still difficult for humans to directly inspect the processed data and prove it is valid, and a model trained with erroneous data can cause fatal problems in real life. This paper presents a dataset reconstruction framework that removes abnormal data from the constructed dataset and introduces strategies to improve the performance of AI models by reconstructing them into a reliable dataset to increase the efficiency of model training. The framework's validity was verified through an experiment on the autonomous driving dataset published through the AI Hub of the National Information Society Agency (NIA). As a result, it was confirmed that it could be rebuilt as a reliable dataset from which abnormal data has been removed.

A Study on Designing Metadata Standard for Building AI Training Dataset of Landmark Images (랜드마크 이미지 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안 연구)

  • Kim, Jinmook
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.54 no.2
    • /
    • pp.419-434
    • /
    • 2020
  • The purpose of the study is to design and propose metadata standard for building AI training dataset of landmark images. In order to achieve the purpose, we first examined and analyzed the state of art of the types of image retrieval systems and their indexing methods, comprehensively. We then investigated open training dataset and machine learning tools for image object recognition. Sequentially, we selected metadata elements optimized for the AI training dataset of landmark images and defined the input data for each element. We then concluded the study with implications and suggestions for the development of application services using the results of the study.

Development of Dataset Items for Commercial Space Design Applying AI

  • Jung Hwa SEO;Segeun CHUN;Ki-Pyeong, KIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2023
  • In this paper, the purpose is to create a standard of AI training dataset type for commercial space design. As the market size of the field of space design continues to increase and the time spent increases indoors after COVID-19, interest in space is expanding throughout society. In addition, more and more consumers are getting used to the digital environment. Therefore, If you identify trends and preemptively propose the atmosphere and specifications that customers require quickly and easily, you can increase customer trust and conduct effective sales. As for the data set type, commercial districts were divided into a total of 8 categories, and images that could be processed were derived by refining 4,009,30MB JPG format images collected through web crawling. Then, by performing bounding and labeling operations, we developed a 'Dataset for AI Training' of 3,356 commercial space image data in CSV format with a size of 2.08MB. Through this study, elements of spatial images such as place type, space classification, and furniture can be extracted and used when developing AI algorithms, and it is expected that images requested by clients can be easily and quickly collected through spatial image input information.

Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates (전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석)

  • Chul-Soo Ye;Young-Man Ahn;Tae-Woong Baek;Kyung-Tae Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent times, semantic image segmentation methods using deep learning models have been widely used for monitoring changes in surface attributes using remote sensing imagery. To enhance the performance of various UNet-based deep learning models, including the prominent UNet model, it is imperative to have a sufficiently large training dataset. However, enlarging the training dataset not only escalates the hardware requirements for processing but also significantly increases the time required for training. To address these issues, transfer learning is used as an effective approach, enabling performance improvement of models even in the absence of massive training datasets. In this paper we present three transfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which are combined with the representative pretrained models of VGG19 model and ResNet50 model. We applied these models to building extraction tasks and analyzed the accuracy improvements resulting from the application of transfer learning. Considering the substantial impact of learning rate on the performance of deep learning models, we also analyzed performance variations of each model based on different learning rate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA dataset for evaluating the performance of building extraction results. The average accuracy improvements for the three dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, while both UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

The Effect of Background on Object Recognition of Vision AI (비전 AI의 객체 인식에 배경이 미치는 영향)

  • Wang, In-Gook;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.127-128
    • /
    • 2023
  • The construction industry is increasingly adopting vision AI technologies to improve efficiency and safety management. However, the complex and dynamic nature of construction sites can pose challenges to the accuracy of vision AI models trained on datasets that do not consider the background. This study investigates the effect of background on object recognition for vision AI in construction sites by constructing a learning dataset and a test dataset with varying backgrounds. Frame scaffolding was chosen as the object of recognition due to its wide use, potential safety hazards, and difficulty in recognition. The experimental results showed that considering the background during model training significantly improved the accuracy of object recognition.

  • PDF

Detection of Anomaly Lung Sound using Deep Temporal Feature Extraction (깊은 시계열 특성 추출을 이용한 폐 음성 이상 탐지)

  • Kim-Ngoc T. Le;Gyurin Byun;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.605-607
    • /
    • 2023
  • Recent research has highlighted the effectiveness of Deep Learning (DL) techniques in automating the detection of lung sound anomalies. However, the available lung sound datasets often suffer from limitations in both size and balance, prompting DL methods to employ data preprocessing such as augmentation and transfer learning techniques. These strategies, while valuable, contribute to the increased complexity of DL models and necessitate substantial training memory. In this study, we proposed a streamlined and lightweight DL method but effectively detects lung sound anomalies from small and imbalanced dataset. The utilization of 1D dilated convolutional neural networks enhances sensitivity to lung sound anomalies by efficiently capturing deep temporal features and small variations. We conducted a comprehensive evaluation of the ICBHI dataset and achieved a notable improvement over state-of-the-art results, increasing the average score of sensitivity and specificity metrics by 2.7%.

Automatic Extraction of Liver Region from Medical Images by Using an MFUnet

  • Vi, Vo Thi Tuong;Oh, A-Ran;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • This paper presents a fully automatic tool to recognize the liver region from CT images based on a deep learning model, namely Multiple Filter U-net, MFUnet. The advantages of both U-net and Multiple Filters were utilized to construct an autoencoder model, called MFUnet for segmenting the liver region from computed tomograph. The MFUnet architecture includes the autoencoding model which is used for regenerating the liver region, the backbone model for extracting features which is trained on ImageNet, and the predicting model used for liver segmentation. The LiTS dataset and Chaos dataset were used for the evaluation of our research. This result shows that the integration of Multiple Filter to U-net improves the performance of liver segmentation and it opens up many research directions in medical imaging processing field.

KOMUChat: Korean Online Community Dialogue Dataset for AI Learning (KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구)

  • YongSang Yoo;MinHwa Jung;SeungMin Lee;Min Song
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.219-240
    • /
    • 2023
  • Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.