• Title/Summary/Keyword: AI Security

Search Result 458, Processing Time 0.028 seconds

Topic Modeling to Identify Cloud Security Trends using news Data Before and After the COVID-19 Pandemic (뉴스 데이터 토픽 모델링을 활용한 COVID-19 대유행 전후의 클라우드 보안 동향 파악)

  • Soun U Lee;Jaewoo Lee
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.67-75
    • /
    • 2022
  • Due to the COVID-19 pandemic, many companies have introduced remote work. However, the introduction of remote work has increased attacks on companies to access sensitive information, and many companies have begun to use cloud services to respond to security threats. This study used LDA topic modeling techniques by collecting news data with the keyword 'cloud security' to analyze changes in domestic cloud security trends before and after the COVID-19 pandemic. Before the COVID-19 pandemic, interest in domestic cloud security was low, so representation or association could not be found in the extracted topics. However, it was analyzed that the introduction of cloud is necessary for high computing performance for AI, IoT, and blockchain, which are IT technologies that are currently being studied. On the other hand, looking at topics extracted after the COVID-19 pandemic, it was confirmed that interest in the cloud increased in Korea, and accordingly, interest in cloud security improved. Therefore, security measures should be established to prepare for the ever-increasing usage of cloud services.

Efficiency Analysis of Integrated Defense System Using Artificial Intelligence (인공지능을 활용한 통합방위체계의 효율성 분석)

  • Yoo Byung Duk;Shin Jin
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.147-159
    • /
    • 2023
  • Recently, Chat GPT artificial intelligence (AI) is of keen interest to all governments, companies, and military sectors around the world. In the existing era of literacy AI, it has entered an era in which communication with humans is possible with generative AI that creates words, writings, and pictures. Due to the complexity of the current laws and ordinances issued during the recent national crisis in Korea and the ambiguity of the timing of application of laws and ordinances, the golden time of situational measures was often missed. For these reasons, it was not able to respond properly to every major disaster and military conflict with North Korea. Therefore, the purpose of this study was to revise the National Crisis Management Basic Act, which can act as a national tower in the event of a national crisis, and to promote artificial intelligence governance by linking artificial intelligence technology with the civil, government, military, and police.

A Network Packet Analysis Method to Discover Malicious Activities

  • Kwon, Taewoong;Myung, Joonwoo;Lee, Jun;Kim, Kyu-il;Song, Jungsuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.143-153
    • /
    • 2022
  • With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

Ethics for Artificial Intelligence: Focus on the Use of Radiology Images (인공지능 의료윤리: 영상의학 영상데이터 활용 관점의 고찰)

  • Seong Ho Park
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.4
    • /
    • pp.759-770
    • /
    • 2022
  • The importance of ethics in research and the use of artificial intelligence (AI) is increasingly recognized not only in the field of healthcare but throughout society. This article intends to provide domestic readers with practical points regarding the ethical issues of using radiological images for AI research, focusing on data security and privacy protection and the right to data. Therefore, this article refers to related domestic laws and government policies. Data security and privacy protection is a key ethical principle for AI, in which proper de-identification of data is crucial. Sharing healthcare data to develop AI in a way that minimizes business interests is another ethical point to be highlighted. The need for data sharing makes the data security and privacy protection even more important as data sharing increases the risk of data breach.

정보보호 분야의 XAI 기술 동향

  • Kim, Hongbi;Lee, Taejin
    • Review of KIISC
    • /
    • v.31 no.5
    • /
    • pp.21-31
    • /
    • 2021
  • 컴퓨터 기술의 발전에 따라 ML(Machine Learning) 및 AI(Artificial Intelligence)의 도입이 활발히 진행되고 있으며, 정보보호 분야에서도 활용이 증가하고 있는 추세이다. 그러나 이러한 모델들은 black-box 특성을 가지고 있으므로 의사결정 과정을 이해하기 어렵다. 특히, 오탐지 리스크가 큰 정보보호 환경에서 이러한 문제점은 AI 기술을 널리 활용하는데 상당한 장애로 작용한다. 이를 해결하기 위해 XAI(eXplainable Artificial Intelligence) 방법론에 대한 연구가 주목받고 있다. XAI는 예측의 해석이 어려운 AI의 문제점을 보완하기 위해 등장한 방법으로 AI의 학습 과정을 투명하게 보여줄 수 있으며, 예측에 대한 신뢰성을 제공할 수 있다. 본 논문에서는 이러한 XAI 기술의 개념 및 필요성, XAI 방법론의 정보보호 분야 적용 사례에 설명한다. 또한, XAI 평가 방법을 제시하며, XAI 방법론을 보안 시스템에 적용한 경우의 결과도 논의한다. XAI 기술은 AI 판단에 대한 사람 중심의 해석정보를 제공하여, 한정된 인력에 많은 분석데이터를 처리해야 하는 보안담당자들의 분석 및 의사결정 시간을 줄이는데 기여할 수 있을 것으로 예상된다.

AI-based Bridge Safety Monitoring System Model (AI 기반의 교량 안전 모니터링 시스템 모델)

  • Yeong-Hwi Ahn;Hyoung-Min Ham;Jong-Su Park;Dong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.107-108
    • /
    • 2023
  • 본 논문에서는 교량의 변위를 IoT 장치를 이용하여 실시간 측정하고 추출된 데이터를 이용하여 교량의 이상징후를 AI 기반으로 진단 및 모니터링 하는 방법을 제안한다. AI 모델 학습 학습을 위해서 비정상 상태의 교량이 필요하지만, 실제 교량에 인위적으로 비정상 상태를 만들 수 없으므로, 탄성 받침을 이용하여 모의 교량을 제작하였다. 탄성 받침을 이용하여 제작에 반영 및 모의교량에 적합한 모의 차량도 제작하여 정상적 데이터와 비정상적 데이터를 수집하였다. 수집된 데이터를 전처리 과정을 통해 AI 분석을 통해 교량의 이상 징후를 진단 및 모니터링하였으며, 제안 모델을 실험한 결과 96.7%의 정확도가 도출되었다.

  • PDF

Study on Intelligence (AI) Detection Model about Telecommunication Finance Fraud Accident (전기통신금융사기 사고에 대한 이상징후 지능화(AI) 탐지 모델 연구)

  • Jeong, Eui-seok;Lim, Jong-in
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.149-164
    • /
    • 2019
  • Digital Transformation and the Fourth Industrial Revolution, electronic financial services should be provided safely in accordance with rapidly changing technology changes in the times of change. However, telecommunication finance fraud (voice phishing) accidents are currently ongoing, and various efforts are being made to eradicate accidents such as legal amendment and improvement of policy system in order to cope with continuous increase, intelligence and advancement of accidents. In addition, financial institutions are trying to prevent fraudulent accidents by improving and upgrading the abnormal financial transaction detection system, but the results are not very clear. Despite these efforts, telecommunications and financial fraud incidents have evolved to evolve against countermeasures. In this paper, we propose an intelligent over - the - counter financial transaction system modeled through scenario - based Rule model and artificial intelligence algorithm to prevent financial transaction accidents by voice phishing. We propose an implementation model of artificial intelligence abnormal financial transaction detection system and an optimized countermeasure model that can block and respond to analysis and detection results.

A Study on Strategic Development Approaches for Cyber Seniors in the Information Security Industry

  • Seung Han Yoon;Ah Reum Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.73-82
    • /
    • 2024
  • In 2017, the United Nations reported that the population aged 60 and above was increasing more rapidly than all younger age groups worldwide, projecting that by 2050, the population aged 60 and above would constitute at least 25% of the global population, excluding Africa. The world is experiencing a decline in the rate of increase in the working-age population due to global aging, and the younger generation tends to avoid difficult and challenging occupations. Although theoretically, AI equipped with artificial intelligence can replace humans in all fields, in the realm of practical information security, human judgment and expertise are absolutely essential, especially in ethical considerations. Therefore, this paper proposes a method to retrain and reintegrate IT professionals aged 50 and above who are retiring or seeking career transitions, aiming to bring them back into the industry. For this research, surveys were conducted with 21 government/public agencies representing demand and 9 security monitoring companies representing supply. Survey results indicated that both demand (90%) and supply (78%) unanimously agreed on the absolute necessity of such measures. If the results of this research are applied in the field, it could lead to the strategic development of senior information security professionals, laying the foundation for a new market in the Korean information security industry amid the era of low birth rates and longevity.

Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware (악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발)

  • Park, Jihyeon;Kim, Taeok;Shin, Yulim;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

Comparing Zoom's Security Analysis and Security Update Results (줌의 보안 취약점 분석과 보안 업데이트 결과 비교)

  • Kim, Kyuhyeong;Choi, Younsung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.55-65
    • /
    • 2020
  • As corona began to spread around the world, it had such a big impact on many people's lives that the word "Untact Culture" was born. Among them, non-face-to-face meetings naturally became a daily routine as educational institutions and many domestic and foreign companies used video conferencing service platforms. Among many video conferencing service platforms, Zoom, the company with the largest number of downloads, caused many security issues and caused many concerns about Zoom's security. In this paper, Zoom's security problems and vulnerabilities were classified into five categories, and Zoom's latest update to solve those problems and the 90-day security planning project were compared and analyzed. And the problem was solved and classified as unresolved. Three of the five parts have been resolved but are still described as how they should be resolved and improved in the future for the two remaining parts.