AI speakers which are wireless speakers with smart features have released from many manufacturers and adopted by many customers. Though smart features including voice recognition, controlling connected devices and providing information are embedded in many mobile phones, AI speakers are sitting in home and has a role of the central en-tertainment and information provider. Many surveys have investigated the important factors to adopt AI speakers and influ-encing factors on satisfaction. Though most surveys on AI speakers are cross sectional, we can track customer attitude toward AI speakers longitudinally by analyzing customer reviews on AI speakers. However, there is not much research on the change of customer attitude toward AI speaker. Therefore, in this study, we try to grasp how the attitude of AI speaker changes with time by applying text mining-based analysis. We collected the customer reviews on Amazon Echo which has the highest share of AI speakers in the global market from Amazon.com. Since Amazon Echo already have two generations, we can analyze the characteristics of reviews and compare the attitude ac-cording to the adoption time. We identified all sub topics of customer reviews and specified the topics for smart features. And we analyzed how the share of topics varied with time and analyzed diverse meta data for comparisons. The proportions of the topics for general satisfaction and satisfaction on music were increasing while the proportions of the topics for music quality, speakers and wireless speakers were decreasing over time. Though the proportions of topics for smart fea-tures were similar according to time, the share of the topics in positive reviews and importance metrics were reduced in the 2nd generation of Amazon Echo. Even though smart features were mentioned similarly in the reviews, the influential effect on satisfac-tion were reduced over time and especially in the 2nd generation of Amazon Echo.
Omar Abdulrahmanal Alattas Alhashmi;Mohd Faizal Abdullah;Raihana Syahirah Abdullah
International Journal of Computer Science & Network Security
/
제23권2호
/
pp.173-182
/
2023
The UAE government has set its sights on creating a smart, electronic-based government system that utilizes AI. The country's collaboration with India aims to bring substantial returns through AI innovation, with a target of over $20 billion in the coming years. To achieve this goal, the UAE launched its AI strategy in 2017, focused on improving performance in key sectors and becoming a leader in AI investment. To ensure public safety as the role of AI in government grows, the country is working on developing integrated cyber security solutions for SCADA systems. A questionnaire-based study was conducted, using the AI IQ Threat Scale to measure the variables in the research model. The sample consisted of 200 individuals from the UAE government, private sector, and academia, and data was collected through online surveys and analyzed using descriptive statistics and structural equation modeling. The results indicate that the AI IQ Threat Scale was effective in measuring the four main attacks and defense applications of AI. Additionally, the study reveals that AI governance and cyber defense have a positive impact on the resilience of AI systems. This study makes a valuable contribution to the UAE government's efforts to remain at the forefront of AI and technology exploitation. The results emphasize the need for appropriate evaluation models to ensure a resilient economy and improved public safety in the face of automation. The findings can inform future AI governance and cyber defense strategies for the UAE and other countries.
본 연구에서는 차기 개정교육과정의 개정을 앞두고 인공지능교육의 효과성을 높이기 위한 AI리터러시 교육의 필요성을 살펴보고자 하였다. 이를 위해 고등학생을 대상으로 인공지능 모델링 수업을 실시하고 인공지능교육에서 학생들이 인식하는 AI리터러시에 대한 필요성과 내용 및 교육시기 등을 설문을 통해 살펴보았다. 인공지능수업에서 데이터 활용 및 데이터 전처리의 필요성에 대해서는 대체로 동의하는 결과가 나타났으며, 인공지능 수업을 진행하는 과정에서 데이터베이스 활용에 대한 기초역량이 부족하여 어려움을 겪는 경우가 많았다. 특히, 데이터 분석을 위한 파일의 구조에 대한 이해가 부족하였으며 데이터분석을 위한 데이터저장의 형태에 대한 이해도가 낮은 것으로 관찰되었다. 이러한 부분을 극복하기 위하여 데이터처리를 위한 사전교육의 필요성을 인식하였고, 그 시기로는 대체적으로 고등학교 진학 이전이 적절하다는 의견이 많았다. AI리터러시의 내용요소에 대해서는 데이터 생성 및 삭제를 비롯하여 데이터 변형과 함께 데이터 시각화의 내용에 대한 요구가 높았음을 알 수 있었다.
Smart systems and services aim to facilitate growing urban populations and their prospects of virtual-real social behaviors, gig economies, factory automation, knowledge-based workforce, integrated societies, modern living, among many more. To satisfy these objectives, smart systems and services must comprises of a complex set of features such as security, ease of use and user friendliness, manageability, scalability, adaptivity, intelligent behavior, and personalization. Recently, artificial intelligence (AI) is realized as a data-driven technology to provide an efficient knowledge representation, semantic modeling, and can support a cognitive behavior aspect of the system. In this paper, an integration of AI with the smart systems and services is presented to mitigate the existing challenges. Several novel researches work in terms of frameworks, architectures, paradigms, and algorithms are discussed to provide possible solutions against the existing challenges in the AI-based smart systems and services. Such novel research works involve efficient shape image retrieval, speech signal processing, dynamic thermal rating, advanced persistent threat tactics, user authentication, and so on.
스마트 헬스케어는 ICT 분야와 의료서비스 분야가 융 복합 된 분야로 다양한 분야에서 학제 간 융 복합 연구가 활발히 이루어지고 있다. 본 연구는 토픽모델링(Topic Modeling)과 에고 네트워크 분석(Ego Network Analysis)을 활용하여 스마트 헬스케어 연구동향을 살피는데 그 목적이 있다. 이를 위해 2001년부터 2018년 4월까지 Scopus에 게재된 2,690편을 대상으로 텍스트 분석, 각 기간별 빈도분석, 토픽모델링, 워드 클라우드, 에고 네트워크 분석을 수행하였다. 토픽 모델링 분석 결과 8개의 주요 연구토픽이 도출되었다. 8개 주요 연구토픽은 "AI in healthcare", " Smart hospital", "Healthcare platform", " blockchain in healthcare", "Smart health data", "Mobile healthcare", "Wellness care", "Cognitive healthcare" 순으로 나타났다. 토픽모델링 결과를 보다 심도 있게 살펴보기 위해 연구토픽별 에고 네트워크 분석을 하였다. 이를 통해 스마트 헬스케어 연구동향을 파악하고, 향후 연구의 방향성을 수립하는데 시사점을 제시하고자 한다.
본 논문은 인터넷에 연결된 여러 형태의 플랫폼 상에 장착되어 있는 다양한 응용 프로그램 통합을 지원하는 e-비즈니스 응용 프로그램 통합(eAI) 프레임워크를 제안한다. 연결된 응용 프로그램은 프레임워크를 구성하고 있는 워크플로우 시스템에 의해서 구동되고 조정되면서 특정 비즈니스 목적을 달성하게 된다. 프레임워크 구성을 위해서 5개의 하위 프레임워크 구성 모듈이 도출되었으며 도출된 각 모듈의 기능과 역할이 정의되었다. 도출된 5개의 하위 모듈은 비즈니스 프로세스 설계 툴, eAI 플랫폼, 비즈니스 프로세스 변환 모듈, UDDI 연결 모듈, 그리고 워크플로우 시스템을 포함한다. 제안된 프레임워크 환경에서 기업 내$\cdot$외부 응용 프로그램들은 방화벽에 구애되지 않고 손쉽게 통합될 수 있다. 본 논문에서는 제안된 시스템의 구현을 위한 워크플로우 시스템의 확장에 대해서 비교적 자세하게 기술하였으며, 구현된 eAI 프레임워크를 사용한 응용 프로그램 구현을 통하여 제안된 프레임워크의 유용성을 확인하였다. 완전한 기능을 갖춘 eAI 솔루션은 이 프레임워크에 추가적인 기능을 점진적으로 추가함으로써 구현 가능하다.
Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
웰빙융합연구
/
제6권2호
/
pp.27-31
/
2023
Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.
NGUYEN, Thanh Luan;NGUYEN, Van Phuoc;DANG, Thi Viet Duc
The Journal of Asian Finance, Economics and Business
/
제9권5호
/
pp.225-237
/
2022
The term "artificial intelligence" is considered a component of sophisticated technological developments, and several intelligent tools have been developed to assist organizations and entrepreneurs in making business decisions. Artificial intelligence (AI) is defined as the concept of transforming inanimate objects into intelligent beings that can reason in the same way that humans do. Computer systems can imitate a variety of human intelligence activities, including learning, reasoning, problem-solving, speech recognition, and planning. This study's objective is to provide responses to the questions: Which factors should be taken into account while deciding whether or not to use AI applications? What role do these elements have in AI application adoption? However, this study proposes a framework to explore the significance and relation of success factors to AI adoption based on the technology-organization-environment model. Ten critical factors related to AI adoption are identified. The framework is empirically tested with data collected by mail surveying organizations in Vietnam. Structural Equation Modeling is applied to analyze the data. The results indicate that Technical compatibility, Relative advantage, Technical complexity, Technical capability, Managerial capability, Organizational readiness, Government involvement, Market uncertainty, and Vendor partnership are significantly related to AI applications adoption.
This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.
Recently, LLM (Large Language Model), a rapidly developing generative AI technology, is receiving much attention in the smart construction field. This study proposes a methodology for implementing an knowledge expert system by linking BIM (Building Information Modeling), which supports data hub functions in the smart construction domain with LLM. In order to effectively utilize LLM in a BIM expert system, excessive model learning costs, BIM big data processing, and hallucination problems must be solved. This study proposes an LLM-based BIM expert system architecture that considers these problems. This study focuses on the RAG (Retrieval-Augmented Generation) document generation method and search algorithm for effective BIM data retrieval, with the goal of implementing an LLM-based BIM expert system within a small GPU resource. For performance comparison and analysis, a prototype of the designed system is developed, and implications to be considered when developing an LLM-based BIM expert system are derived.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.