• 제목/요약/키워드: AI Modeling

검색결과 242건 처리시간 0.022초

A Study on Tower Modeling for Artificial Intelligence Training in Artifact Restoration

  • Byong-Kwon Lee;Young-Chae Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.27-34
    • /
    • 2023
  • 본 논문은 인공지능(AI)을 이용하여 통일신라 석탑인 '경주 불국사 삼층석탑'의 복원을 위해 3D 모델링 과정을 연구했다. 기존의 3D 모델링 방식은 수많은 Verts와 Face를 생성하므로, 이로 인해 AI 학습에 상당한 시간이 소요한다. 이에 따라, Verts와 Face의 수를 낮추어 더 효율적인 3D 모델링을 수행하는 방식이 필요하다. 이를 위해, 본 연구에서는 석탑의 구조를 정점 및 면의 수로 분석하고, AI 학습에 최적화된 면수를을 최소화 하도록 모델링 방법을 연구했다. 더불어, 우리나라의 석탑 복원을 위한 인공지능학습에 최적화된 모델링 방법론을 제안하고, 인공지능 학습에 필요한 DataSet 을 확보하는 데 의미가 있다.

A Research on AI Generated 2D Image to 3D Modeling Technology

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.81-86
    • /
    • 2024
  • Advancements in generative AI are reshaping graphic and 3D content design landscapes, where AI not only enriches graphic design but extends its reach to 3D content creation. Though 3D texture mapping through AI is advancing, AI-generated 3D modeling technology in this realm remains nascent. This paper presents AI 2D image-driven 3D modeling techniques, assessing their viability in 3D content design by scrutinizing various algorithms. Initially, four OBJ model-exporting AI algorithms are screened, and two are further evaluated. Results indicate that while AI-generated 3D models may not be directly usable, they effectively capture reference object structures, offering substantial time savings and enhanced design efficiency through manual refinements. This endeavor pioneers new avenues for 3D content creators, anticipating a dynamic fusion of AI and 3D design.

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.197-209
    • /
    • 2024
  • 본 연구의 목적은 국내 인공지능 교육의 최근 연구 동향을 분석하여 향후 인공지능 교육의 방향성을 모색하는 것이다. 2016년부터 2023년 11월까지 RISS(Research Information Sharing Service)에 게재된 논문 중 인공지능 교육 관련 논문 697편을 대상으로 워드 클라우드(Word Cloud)와 LDA 토픽 모델링(Latent Dirichlet Allocation Topic Modeling) 기법을 활용하여 분석하였다. 분석결과, 주요 토픽으로는 생성형 인공지능 활용 교육, 인공지능 윤리 교육, 인공지능 융합 교육, 인공지능 활용에 대한 교사 인식과 역할, 대학 교육에서 인공지능 리터러시(Literacy) 개발, 인공지능 기반 교육과 연구 방향으로 여섯 가지가 도출되었다. 분석결과를 토대로, (1) 다양한 교과목에 생성형 인공지능 활용 확대, (2) 인공지능 사용을 위한 윤리적 지침, (3) 인공지능 교육의 장기적 영향 평가, (4) 고등교육에서 교사의 인공지능 활용 역량, (5) 대학의 인공지능 교육과정 다양화, (6) 인공지능 연구 추이 분석 및 교육 플랫폼(Platform) 개발 등을 제안하였다.

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

A Comparative Analysis Between <Leonardo.Ai> and <Meshy> as AI Texture Generation Tools

  • Pingjian Jie;Xinyi Shan;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.333-339
    • /
    • 2023
  • In three-dimensional(3D) modeling, texturing plays a crucial role as a visual element, imparting detail and realism to models. In contrast to traditional texturing methods, the current trend involves utilizing AI tools such as Leonardo.Ai and Meshy to create textures for 3D models in a more efficient and precise manner. This paper focuses on 3D texturing, conducting a comprehensive comparative study of AI tools, specifically Leonardo.Ai and Meshy. By delving into the performance, functional differences, and respective application scopes of these two tools in the generation of 3D textures, we highlight potential applications and development trends within the realm of 3D texturing. The efficient use of AI tools in texture creation also has the potential to drive innovation and enhancement in the field of 3D modeling. In conclusion, this research aims to provide a comprehensive perspective for researchers, practitioners, and enthusiasts in related fields, fostering further innovation and development in this domain.

Using topic modeling-based network visualization and generative AI in online discussions, how learners' perception of usability affects their reflection on feedback

  • Mingyeong JANG;Hyeonwoo LEE
    • Educational Technology International
    • /
    • 제25권1호
    • /
    • pp.1-25
    • /
    • 2024
  • This study aims to analyze the impact of learners' usability perceptions of topic modeling-based visual feedback and generative AI interpretation on reflection levels in online discussions. To achieve this, we asked 17 students in the Department of Korean language education to conduct an online discussion. Text data generated from online discussions were analyzed using LDA topic modeling to extract five clusters of related words, or topics. These topics were then visualized in a network format, and interpretive feedback was constructed through generative AI. The feedback was presented on a website and rated highly for usability, with learners valuing its information usefulness. Furthermore, an analysis using the non-parametric Mann-Whitney U test based on levels of usability perception revealed that the group with higher perceived usability demonstrated higher levels of reflection. This suggests that well-designed and user-friendly visual feedback can significantly promote deeper reflection and engagement in online discussions. The integration of topic modeling and generative AI can enhance visual feedback in online discussions, reinforcing the efficacy of such feedback in learning. The research highlights the educational significance of these design strategies and clears a path for innovation.

AI 스피커!, 감정을 담아 말해봐 - SNS 댓글 분석을 중심으로 (AI speakers!, Speak with feelings - Focusing on Analysis of SNS Comments)

  • 김준환;이남연
    • 디지털융복합연구
    • /
    • 제18권7호
    • /
    • pp.101-110
    • /
    • 2020
  • AI 스피커를 비롯한 관련 디바이스에 감정 맞춤형 서비스나 다양한 기능들이 부가된 기기들이 등장하고 있다. 이에 본 연구는 AI 스피커 사용자들이 작성한 구매 후기 텍스트들의 주제를 확인하고, 실제 설문조사를 통한 실증분석 결과와 비교하기 위해서 LDA(Latent Dirichlet Allocation) 기반의 토픽모델링 분석을 수행하였다. 더 나아가 AI 스피커 사용 경험이 있는 이용자 600명을 대상으로 사용자가 지각한 스피커의 감성지능과 관계품질을 조사하고 서로 유의한 관계가 있는지 구조방정식모형을 통해 검증하였다. 본 연구결과는 첫째, 토픽모델링 분석결과는 대부분의 글에서 주로 AI 스피커의 기능적인 측면에 대해 언급하고 있는 것으로 나타났다. 둘째, 소비자가 인식하는 AI 스피커의 감성지능은 관계품질에 영향을 미치며, 관계품질은 고객만족에 긍정적인 영향을 미쳤다. 따라서 본 연구는 AI 관련 기존 연구를 확장시켜 감성지능 및 관계품질의 개념을 새롭게 접목하여 분석함으로써 이론적 및 실무적으로 시사점을 제공하고 있다.

Exploring AI Principles in Global Top 500 Enterprises: A Delphi Technique of LDA Topic Modeling Results

  • Hyun BAEK
    • 한국인공지능학회지
    • /
    • 제11권2호
    • /
    • pp.7-17
    • /
    • 2023
  • Artificial Intelligence (AI) technology has already penetrated deeply into our daily lives, and we live with the convenience of it anytime, anywhere, and sometimes even without us noticing it. However, because AI is imitative intelligence based on human Intelligence, it inevitably has both good and evil sides of humans, which is why ethical principles are essential. The starting point of this study is the AI principles for companies or organizations to develop products. Since the late 2010s, studies on ethics and principles of AI have been actively published. This study focused on AI principles declared by global companies currently developing various products through AI technology. So, we surveyed the AI principles of the Global 500 companies by market capitalization at a given specific time and collected the AI principles explicitly declared by 46 of them. AI analysis technology primarily analyzed this text data, especially LDA (Latent Dirichlet Allocation) topic modeling, which belongs to Machine Learning (ML) analysis technology. Then, we conducted a Delphi technique to reach a meaningful consensus by presenting the primary analysis results. We expect to provide meaningful guidelines in AI-related government policy establishment, corporate ethics declarations, and academic research, where debates on AI ethics and principles often occur recently based on the results of our study.

A Learning AI Algorithm for Poker with Embedded Opponent Modeling

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.170-177
    • /
    • 2010
  • Poker is a game of imperfect information where competing players must deal with multiple risk factors stemming from unknown information while making the best decision to win, and this makes it an interesting test-bed for artificial intelligence research. This paper introduces a new learning AI algorithm with embedded opponent modeling that can be used for these types of situations and we use this AI and apply it to a poker program. The new AI will be based on several graphs with each of its nodes representing inputs, and the algorithm will learn the optimal decision to make by updating the weight of the edges connecting these nodes and returning a probability for each action the graphs represent.

An Exploratory Study on Issues Related to chatGPT and Generative AI through News Big Data Analysis

  • Jee Young Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.378-384
    • /
    • 2023
  • In this study, we explore social awareness, interest, and acceptance of generative AI, including chatGPT, which has revolutionized web search, 30 years after web search was released. For this purpose, we performed a machine learning-based topic modeling analysis based on Korean news big data collected from November 30, 2022, when chatGPT was released, to August 31, 2023. As a result of our research, we have identified seven topics related to chatGPT and generative AI; (1)growth of the high-performance hardware market, (2)service contents using generative AI, (3)technology development competition, (4)human resource development, (5)instructions for use, (6)revitalizing the domestic ecosystem, (7)expectations and concerns. We also explored monthly frequency changes in topics to explore social interest related to chatGPT and Generative AI. Based on our exploration results, we discussed the high social interest and issues regarding generative AI. We expect that the results of this study can be used as a precursor to research that analyzes and predicts the diffusion of innovation in generative AI.