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Abstract 
Poker is a game of imperfect information where competing players must deal with multiple risk factors stemming from unknown 
information while making the best decision to win, and this makes it an interesting test-bed for artificial intelligence research. This paper 
introduces a new learning AI algorithm with embedded opponent modeling that can be used for these types of situations and we use this AI 
and apply it to a poker program. The new AI will be based on several graphs with each of its nodes representing inputs, and the algorithm 
will learn the optimal decision to make by updating the weight of the edges connecting these nodes and returning a probability for each 
action the graphs represent.  
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1. Introduction 
 
Artificial intelligence has long been applied to games such 

as Chess[1], Checkers[2][3], Go[4], Othello[5][6] and other 
various board games with positive results in beating human 
players and has gained much public attention in the process. 
But because players have entire knowledge of the game states, 
computers have always had the advantage over human players 
when calculating strategies and moves and making future 
predictions in these types of games. On the other hand, games 
such as scrabble or poker are different in that these are games 
of imperfect information; deriving each play style of an 
opponent becomes essential, and human “gut instincts” and 
reasoning have had more success than algorithmic computer 
computation in the past. This is where machine learning is of 
most interest. 

What this project will implement is poker, Texas Hold’em 
style in particular.  A new graph based machine learning 
algorithm that focuses on the strength of relationships 
between the various observable variables to produce an output. 
It will learn to play poker from a blank state with an implicit 
opponent model to decide on a play action without having to 
predict the opponent's action explicitly. The goal will be to 
determine whether machine learning can benefit the poker 
playing performance of AI poker bots as opposed to strategies 
based on pure mathematical and statistical calculations, and if 
so, how much of a benefit it would be. The project will also 
explore the advantages, if any, of the new machine learning 
algorithm by comparing and playing rule based and random 
chance based poker opponents against it. 
 
 

 

 

 
2. Texas Hold’em 

 
There are several important aspects to consider when 

playing Texas Hold’em. The first is the Pre-Flop Evaluation. 
Pre-flop play in Hold’em has been extensively studied in 
poker literature[7] and there exists a general strategy to use 
for each given pre-flop hand since there are only 1326 
possible combinations and 169 distinct hand types for the 
initial two cards. Generally, higher ranked cards have a higher 
probability to win over lower ranked cards and suited hands 
are considered better than cards of different suits, although 
this approach largely depends on other several factors such as 
a players position from the dealer button, whether the game is 
limit or no-limit and how many players are at the table, and 
the chances of winning largely depends on the players ability 
to decide which action by considering these factors. 

Another critical factor when playing Hold’em is the Hand 
Strength Assessment during each stage of the game[8]. For 
example, suppose we have a hand of A-K and the flop comes 
A-J-3. We would have a higher chance of winning over a J-K 
hand and our hand strength will be stronger, but a lower 
chance to win against a J-3 and thus, a weaker hand. Using a 
computer, we are able to simulate all possible hands an 
opponent might have and calculate where our hand ranks 
among these hands. 

A similar but equally important factor to consider is the 
Hand Potential[8]. Consider the previous example where our 
opponent has J-3. Although our hand strength is weaker, if our 
hand was suited and two of the cards on the flop were of the 
same suit, we would have a better potential which would most 
likely win after the Turn and River. Much like finding our 
hand strength, we are able to simulate all possible future 
Turns and Rivers and compare our hand against the possible 
hands an opponent might have. 

Knowing how strong our hand is how do we make an 
action decision? The general practice is to use Pot odds[9]. 
Pot odds percentage is given by the following equation: 
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 Pot Odds = Bet to call / (Total pot + Bet to call) 

In other words, pot odds are the ratio of the current size of 
the pot to the cost of the contemplated call. For example, if 
the pot contains $30, and a player must call $10 to stay in the 
hand, then the player has 30-to-10, or 3-to-1 pot odds and a 10 
/ (30 + 10) = 0.25 or 25% pot odds percentage. This pot odds 
percentage is compared to the probability of winning a hand 
with a future card in order to estimate the call's expected value.  
If the pot odds are 25% and the calculated chances of your 
hand winning is 30%, then you would call the bet because the 
pot odds are in your favor (i.e. a larger expected return value). 

 
 

3. New Graph Based Learning AI 
 
Currently there exist a lot of poker programs, such as 

Poki[10][11], Loki[11] or Hyperborean[12], that uses various 
AI and machine learning techniques. These programs use an 
independent opponent modeling structures which do not 
directly produce an action and relies on estimated value 
calculations[13]. This results in the performance being too 
dependent upon the opponent model. This can be a problem 
when the opponent model is outdated, which is usually the 
case when not learning in real time. Our goal is to create a 
flexible and dynamic strategy learning algorithm that 
incorporates opponent modeling so that it can adapt to 
different opponents while directly producing an output action. 
Thus, a need for a new AI algorithm arises that can memorize 
states of a poker game and learn from the mistakes it makes. 

 
3.1. General structure 

We need a structure that can hold various states of an 
environment and our approach is to use undirected graphs. 
Figure 1 shows the general structure of the graphs, here with 
two decision choices. 
 

 
Fig. 1 Graph based learning AI with two decisions 

 

Each graph will represent a single decision.  Vertices are 
grouped together to represent an attribute where each vertex 
in the group is a possible input for that attribute. The weighted 
edges will represent the “strength” between the inputs. 

Given a set of inputs, we can calculate the summation of 
the weighted edges that connect these input vertices and get 
an output value for each graph. We can then compare the 
graph values to get the strength of each decision when given 
these inputs. 

After the decision is made, we can apply a positive or 
negative reinforcement to the decision by updating the 
weights used. For example, when the decision turns out to be 
wrong, we subtract a reinforcement value from each of the 
weights used and this will be taken into account the next time 
any of the same vertices from this set are given as input. 
Likewise, for a correct decision, we add a positive 
reinforcement value which will affect the strength of this 
particular decision the next time a similar input is given. An 
example with a simplified decision graphs using XOR is 
shown in Fig 2. 

 

 
Fig. 2 An XOR example 

 
When inputs x and y are different, the weights of the 

second graph (5 + 5 = 10) will return a higher value than the 
first graph (0 + 0 = 0) indicating that x XOR y = 1. On the 
other hand, if x and y have the same bits, the weights of the 
first graph will have a larger value indicating that x XOR y = 
0. 

The intuition behind the structure is that given a set of 
inputs, the graph with the most successful, or strongly 
connected, state and most vertices and edges similar to the 
input relations will return the highest value. The advantage of 
this graph is that it can memorize a vast number of states and 
also generate multiple values for each of the contemplated 
decisions. This is crucial to Hold’em, where each learned 
opponent model of any given state still holds valuable 
information that can be used in later games. A disadvantage of 
this structure is that it requires a long computation time since 
each decision requires a graph. But since poker generally has 
3 decisions: fold, check/call and bet/raise, this should not be 
much of a problem. 

Fig 3 shows this decision graph structure applied to a Call 
decision for poker. 
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Fig. 3 Decision graph for calls 

 
HS, HP, and HF denote attributes Hand Strength, Hand 

Potential, and Hand Future, while SPD and PFD denote the 
Hand Strength / Hand Potential Difference and Hand Potential 
/ Hand Future Difference, respectively. The bottom attributes 
BR, CB, and FB denote Rate of Bets, Calls to Bets, and Folds 
to Bets, while the trailing lowercase characters p, f, t, and r 
stand for each of the stage pre-flop, flop, turn, and river. 
Finally CABA and RABA denote the Call Amount to Bet 
Amount and Raise Amount to Bet Amount attributes, all of 
which will be explained shortly. Also note that although 
omitted in Figure 3, every vertex in an attribute group has an 
edge with all the other vertices in different attribute groups. 

Because there are a fairly large amount of edges to traverse 
and read, the graphs were implemented by mapping the edges 
and weights on to matrices instead of an actual graph structure 
shown in Fig 3, since the trade off of space for faster 
computation time is enormous when it comes to a game like 
poker where a decision is also constrained by time. 

The attributes that were used for the graphs can largely be 
classified into two categories: Hand/State Assessment Inputs 
and Opponent Modeling Inputs. These two groups of inputs, 
26 attributes in total, goes into the graph and finds the strength 
of the relations between attribute values to determine which 
decision would be the best to make for any given situation. 

 

3.2. Hand and state assessment inputs 
There are a total of 12 attributes that represent the state of 

the game. Table 1 shows these attributes. The first is stage, 
indicating which stage of the game the play is in and has the 
values of Pre- Flop, Flop, Turn and River. 

 
Table 1. Hand and state assessment inputs and their 
description 

Inputs Description 

Stage Pre-Flop, Flop, Turn, River 

Stack Power L_Stack/(L_Stack + Op_Stack) 
Pot Odds Bet / (Pot + Bet) 

Bets to Call # of bets that can be made 

Min Bet Min. bet to play 

My Bet Opponents bet to call 

Pot Pot size 

Hand Strength Rank of current hand 
Hand Potential Rank of possible hand 

Hand Future Rank of hand on River 

SP Difference Hand Strength–Hand Potential 

PF Difference Hand Potential–Hand Future 

 
Stack Power is the ratio of the learning agents stack 

amount over the entire amount of money in the game, 
give by: 

 Stack Power = L_STACK / (L_STACK + OP_STACK) 

where L_STACK is the learning agents stack and 
OP_STACK is the opponents stack. This will gauge how well 
the learning agent is doing in the game and allow the agent to 
change its play style accordingly, since the agent must play 
tight when short stacked and bet aggressively when it is 
winning. 

Pot odds, as explained before, is given as an input so the 
agent can decide whether calling a bet or raise is worth the 
risk. 

Bets to call is the number of bets that can be made. This is a 
good indicator to how much commitment the opponent is 
making to the pot or to a particular hand. When there are no 
bets to call, the opponent has made a full commitment to the 
hand and will most likely have a good had. When there are 
two or more bets to call, the opponent either has a weak hand 
or is slow playing a strong hand. 

Min Bet is the minimum bet that has to be called for the 
learning agent to stay in play and My Bet is the amount that 
the opponent has to call to stay in. Pot is how much money is 
currently in the pot. These attributes were used to differentiate 
situations and learn how the opponent makes a decision or 
how the learner should respond in these situations. 

Hand Strength, Hand Potential and Hand Future are the 
current hand strength, the hand strength given all possible 
cards that can turn up the next stage, and the calculated hand 
strength for the stage after, and are by far the most important 
factors in the game. Note that the Hand Future value is not 
used during a Turn or Flop and Hand Potential is not used 
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during the River. These values are calculated by using a Hand 
Evaluator and enumerating every possible hand the opponent 
might have and all possible hands that can come in the next 
stages of the game, then comparing it against the learner’s 
hand. Because of the tedious calculations and vast number of 
possible hands, this required a fast computational algorithm. 
This was implemented using Paul D. Senzee’s pre-computed 
perfect hash function on top of Cactus Kev’s Poker Hand 
Evaluation technique. Because there are 2.6 million unique 
hands, learning algorithms cannot be computed efficiently 
without some type of hand evaluator. The basic idea is that of 
these 2.6 million unique playable hands, there are only 7462 
distinct poker hand values when grouped by their ranking and 
this abstraction from unique to distinct allows faster 
calculation and less training time for the learner. The trade off 
is that the abstraction lessens the accuracy of the learner since 
there is a certain level of information loss when converting to 
distinct hands, but the disadvantages are minimal compared to 
the benefits. 

Finally, the SP Difference and PF Difference are the 
difference between the hand strength and hand potential, and 
the hand potential and hand future, respectively. This is a 
good indicator for the possibility of straights or flushes that 
can be overlooked by the hand strength, potential and future. 

 
3.3. Opponent modeling inputs 

It has been shown that using opponent models produce 
significant improvement in performance[17], not just in the 
game of poker, but in other games as well[18][19]. The graph 
algorithm also takes into account the play style of an opponent, 
but “embeds” this into the algorithm as a whole through 
inputs, rather than having a separate model. There are a total 
of 14 attributes used that distinguishes an opponent. Table 3 
shows these attributes. 

 
Table 2. Opponent Modeling Inputs (Attributes) and their 
description 

Inputs Descriptions 
Rate of Bets on Pre-Flop # of Bets / # of Pre-Flops 

Rate of Bets on Flop # of Bets / # of Flops 

Rate of Bets on Turn # of Bets / # of Turns 

Rate of Bets on River # of Bets / # of Rivers 

Calls to Bets Pre-Flop # of Calls / # of Pre-Flop Bets 

Calls to Bets on Flop # of Calls / # of Flop Bets 

Calls to Bets Turn # of Calls / # of Turn Bets 

Calls to Bets River # of Calls / # of River Bets 

Folds To Bets on Pre-Flop # of Folds / # of Pre-Flop Bets 

Folds To Bets on Flop # of Folds / # of Flop Bets 

Folds To Bets on Turn # of Folds / # of Turn Bets 

Folds To Bets on River # of Folds / # of River Bets 

Call Amount to Bet Amount Call Amount / Bet Amount 

Raise Amount to Bet Amount Raise Amount / Bet Amount 
 
The Rate of Bets is the ratio of bets made by an opponent in 

a particular stage and the number of those stages played. The 
Calls to Bets value is the ratio of Calls made by an opponent 
to the Bets made by the learner, for each stage. The Folds to 
Bets value is the ratio of opponent folds to the learner’s bets. 
There are values for each of the four stages and this will help 
the learner determine its opponents play style. For example, a 
low Rate of Bets value in the Flop stage and a high value in 
the River stage could be a good indicator that the opponent 
likes to slow play strong hands. A high Folds to Bets value in 
the Flop stage could indicate that the opponent does not chase 
cards and is thus a conservative type player. 

There are two more attributes, the Call Amount to Bet 
Amount and the Raise Amount to Bet Amount, which is the 
ratio of the opponents call and raise amounts to the learners 
bet amount, respectively. This shows on average how much 
an opponent is willing to call or how much an opponent will 
raise given a bet. It also provides insight into the opponent for 
the learner. 

 
3.4. Graph based AI applied to poker  

By applying our graph based AI to the poker program we 
can assign a graph to each action. 3 types of poker playing 
programs were implemented using this AI. Table 4 gives us a 
list of the implemented programs. 

 
Table 3. Implemented AIs and Opponents 

Learning AI Opponent 
6-Value Based AI Aggressive 

3-Value Based AI Neutral 
3-Value Based AI with Base Strategy Conservative 

 Bluff / Base Strategy 
 
The 6-Value Based AI uses 6 graphs, each corresponding to 

fold, check/call, bet/raise 0.1, bet/raise 0.2, bet/raise 0.3 and 
bet/raise 0.4. The bet/raise actions will match the bet so that 
the pot odds for the opponent will match its following decimal 
number. For example, if bet/raise 0.2 was chosen with 30$ in 
the pot, then a bet will be made such that the pot odds for the 
opponent will be 0.2, so the learner will make a bet/raise of 
10$: 

 Opponent Pod Odds = Bet / (30 + 2 * Bet)= 0.2 

B = 30 / 3= 10$ 
 
The 3-Value Based AI is similar to the 6-Value Based AI 

but it uses 3 graphs, each for fold, check/call, bet/raise instead 
and is used for limit Hold’em. 

The 3-Value Based AI with Base Strategy uses the 3-Value 
Based AI values and a base strategy system with hard coded 
values, and the two values are combined at to produce a 
decision. Figure 4 shows the architecture of this program.  

The attributes are mapped to 5 values: High, High-Medium, 
Medium, Medium-Low and Low, then used as input for the 
graphs in our AI structure. 
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Fig. 4 3-value based AI with base strategy 

 
Each graph will return a calculated value based on the 

weights between the inputs and we can obtain a probability 
distribution from these values[11]. Then, by using a random 
number generator, we select an action according to its 
probability distribution. So if a value of 40 was returned for 
fold, 60 was returned for check/call and 100 was returned for 
bet/raise, then we fold 20% of the time ( 40 / (40 + 60 + 100) 
= 0.2 ), check or call 30% of the time and bet or raise 50% of 
the time. The advantages of using a probability distribution is 
that this will keep the actions random enough so that an 
opponent cannot easily find out the strategy used and this will 
also prevent getting stuck at a local maximum when searching 
for an optimal action. We continue this for every betting 
round of each stage of the game until there is a winner. If 
round ends with a winner, then we train the decision graphs 
with a reinforcement value according to the pot amount that 
was won or lost.  A large winning will give a strong positive 
reinforcement for the actions taken throughout the round and 
the same value will be distributed among actions not taken as 
negative reinforcement. This is to maintain a balance of 
values between the decision graphs and make sure that there is 
a lesser probability that other actions are taken. Likewise, a 
loss, with the exception of folding, will feed back a negative 
reinforcement so that there will be a lesser chance that the 
learner makes the same decisions in similar situations, while 
the same value will be distributed among other actions as a 
positive reinforcement. When the learner folds, there is no 
reinforcement, since in poker, there is no way of knowing if 
the decision to fold was right or wrong without looking at the 
opponents hand. 

This AI will require a long time to train compared to 
opponent modeling poker programs since rather than learning 
an opponent model, it will start by learning how to play poker 
and will also learn what strategy to use against specific 
opponents and which attributes to look for. Then it uses this 
knowledge against new opponents by matching the opponent 
type and game state to similar situations encountered during 
training. Unlike other poker bots that use machine learning 
instances only when in play, this poker program opts for more 
of a long term solution by training its self from a blank state 
and retaining those experiences for future use. Every game it 
plays will also be used as training data at the end of the game, 
so it can dynamically adapt to each individual game too. 

A problem this algorithm has is determining the accuracy 
and errors. Because of the probabilistic nature of Hold’em, 
even without the imperfect information aspects of the game, it 

is still impossible to find out whether an action was an 
optimal decision or not[14]. For example, winning just the 
blinds with a strong hand such as a four of a kind is still a win, 
but it would not be an optimal solution since decisions to 
increase the winning pot size were not taken. 

 
 

4. Experiments and Analysis 
 

The experiments were conducted with a 1 on 1 heads up 
game against each of the opponents to eliminate the decision 
factors arising when playing multiple opponents. Also, Pre-
Flop decisions were eliminated and all players were made to 
check or call all Pre-flop hands in order to prevent folding the 
majority of Pre-Flop hands, which is often the case during 
heads up games, and also to maximize the number of actual 
plays in different situations. 

To obtain meaningful empirical results for the poker 
programs, it is necessary to run a series of experiments against 
different opponents. Four opponents each with different play 
styles were used for the experiments: Aggressive Opponent, 
Neutral Opponent and Conservative Opponent, each of their 
names being self explanatory. Table 3 gives a list of the 
Opponents implemented. Aggressive Opponent bets/raises 
aggressively, even with a considerably weak hand, while 
Conservative Opponent only bets/raises when it has a very 
strong hand and will fold most bets, and Neutral Opponent 
falls somewhere between the two. The percentile distribution 
for each of the opponents actions were determined by 
empirical data based on what is normally seen in common 
poker games. No formulae were used to determine these 
distributions and in real games, they are often different 
depending on the level of poker skill the poker table shows. 
Base Opponent was implemented as a neutral type player with 
a tendency to bluff with weak hands, and its play strategy was 
also used as the base for the 3-Value Based AI with Base 
Strategy program. 

Many experiments were performed to establish reliable 
results and, and only a cross-section of those tests are 
presented here. 

 
 

4.1. Trained 6-value AI vs. opponents 
The 6-Value AI was trained against each of its opponents 

for exactly 200 rounds before facing its opponents one by one 
for another 200 rounds. The results are shown in Fig 5 and Fig 
6. 

The AI played worse against the Neutral and Conservative 
opponents but compensated by showing a stronger 
performance against the Aggressive opponent. This was 
because the AI combined its experiences against each of the 
opponents from training in an attempt to converge to, or more 
likely average out to, an optimal strategy that plays well 
against all the opponents. 
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Fig. 5 Winning pot size ratio of 6-Value Poker AI vs. 

Opponents after training 200 rounds with each opponent 
 

 
Fig. 6  The number of rounds the trained 6-Value Poker AI 

won 
 
By training against multiple opponents, the graph structures 

should have updated the weights of the common vertices that 
affect all types of play, such as hand strength and potential, 
while keeping the opponent modeling vertices stale, and thus 
increase play performance. But this was not the case as the 
winning pot size ratio hovered around 0.0 with a slight 
increase at the end. This seemed to be an indicator that there 
might have been too many decision graphs compared to the 
number of attribute values supplied, and this aspect might 
have not been able to show its full potentials within the 200 
rounds.  

It is also important to note that the 6-Value Poker AI still 
played poorly, if not worse, against the Base opponent’s 
random bluffing style strategy, and multiple training sessions 
did not fix the problem. 

 
4.2. Trained 3-value poker AI vs. opponents 

The 3-Value Poker AI structure was trained 200 rounds 
against each opponent then played against each opponent for 
an additional 200 rounds separately. 

Similar to the first experiment, training once again had the 
averaging out effect on the 3-Value Poker AI. Notice from Fig 
7 that the performance against the Neutral and Conservative 
opponent slightly decreased, while there was a much larger 
performance boost against both the Base and Aggressive 
opponent. 

 

 
Fig. 7 Winning pot size ratio of 3-Value Poker AI vs. 

Opponents after training 200 rounds with each opponent 
 

 
Fig. 8 The number of rounds the trained 3-Value Poker AI 

won 
  
While still not generating a profit, the play strategy 

becomes more stable and can hold out for a longer time. 
Since the graph based structure requires a lot of training 

example while having a wide mixture of various different 
opponents to distinguish which attribute vertices are important 
in which situation, we shift our focus to creating program so 
that it could use the 3-Value Poker AI as a booster to its own 
strategy so that the AI will not need to satisfy the requirement 
and still be useful. Because the Bases opponents bluffing 
strategy was the hard opponent to win against, we will choose 
the Base opponent as the base strategy to add on to our AI 
(hence the name Base). 
 

4.3. Trained 3-valued poker AI with base strategy vs. 
opponents 

In our final experiment, we trained the AI along with the 
Base Strategy for 200 rounds with each opponent then had it 
face each of the opponents for another 200 rounds separately. 
Figure 9 and Figure 10 shows the surprising results. 
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Fig. 9 Winning pot size ratio of 3-Valued Ai with Base 

Strategy vs. Opponents after training 200 rounds with each 
opponend 

 

 
Fig. 10 The number of hands won by 3-Value AI with Base 

Strategy 
 
The AI begins to return profit and does not even get close 

to losing. The AI also makes correct decision and converges 
to a near optimal value. For example, when playing against 
the Conservative Opponent, the AI continues to bet and raise 
hard because it knows that the Conservative Opponent will 
fold near 90% of the time. Once the Conservative Opponent 
bets or raises, the AI knows it has a very strong had and 
proceeds to fold.  
   Although it will require more training to create a stronger 
AI, through these experiments shows that the graphed based 
learning structure has great potentials to improve. 

 
 

5. Conclusion and Future Work 
 
These experiments show that the presented graph based 

learning algorithm can be used for poker. Nevertheless, this 
algorithm is the first time being used and is in its infant stage. 
It has a lot of areas that needs to be worked on. One such are 
would be the mapping of continuous values to a discrete 
number of vertices. One idea would be to use fuzzy logic and 
use functions instead of vertices.  Also some aspects of 
poker still not researched to the full extent in this paper were 
pre-flop strategies and playing against multiple opponents. 
The goal of the research was to find out how the new graph 
based learning AI can be used and applied to poker, and in a 
more general sense, how well machine learning performs in 
situations of imperfect information. For those reasons, a lot of 

detailed aspects of poker have been omitted and there is still 
plenty of room for improvement in this new learning structure. 

The new graph based learning AI successfully found 
winning strategies to play against different opponents and 
showed that it can improve over time. However, this does not 
necessarily mean that it will be effective against human 
opponent. Humans naturally have the most sophisticated 
opponent modeling abilities and can easily change their play 
style. This creates a reason to investigate the usage 
performance of machines on humans. As seen in the 
experiments, random play style was not well classified in 
general and this can relate to real life poker situations where 
human factors set in. Such would be fatigue, short play time 
or dynamically changing opponents at a given table that result 
in changing styles for the learner. Also, different strategies 
which were not included in the experiment, such as slow plays, 
strutting fishing etc, could affect the performance of the 
learner. 

Poker has a limitless amount of research topics and 
as long as poker is around, the research will continue on. 
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