

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 3, September 2010, pp.170-177

DOI : 10.5391/IJFIS.2010.10.3.170

170

A Learning AI Algorithm for Poker with Embedded Opponent Modeling

Seong-gon Kim* and Yong-Gi Kim**

*CISE department, University of Florida, USA
**Dept of Computer Science, Gyeongsang National University, Korea

Corresponding author: ygkim@gnu.ac.kr

Abstract
Poker is a game of imperfect information where competing players must deal with multiple risk factors stemming from unknown
information while making the best decision to win, and this makes it an interesting test-bed for artificial intelligence research. This paper
introduces a new learning AI algorithm with embedded opponent modeling that can be used for these types of situations and we use this AI
and apply it to a poker program. The new AI will be based on several graphs with each of its nodes representing inputs, and the algorithm
will learn the optimal decision to make by updating the weight of the edges connecting these nodes and returning a probability for each
action the graphs represent.

Key Word : Learning AI Algorithm, Poker, Opponent Modeling

1. Introduction

Artificial intelligence has long been applied to games such

as Chess[1], Checkers[2][3], Go[4], Othello[5][6] and other
various board games with positive results in beating human
players and has gained much public attention in the process.
But because players have entire knowledge of the game states,
computers have always had the advantage over human players
when calculating strategies and moves and making future
predictions in these types of games. On the other hand, games
such as scrabble or poker are different in that these are games
of imperfect information; deriving each play style of an
opponent becomes essential, and human “gut instincts” and
reasoning have had more success than algorithmic computer
computation in the past. This is where machine learning is of
most interest.

What this project will implement is poker, Texas Hold’em
style in particular. A new graph based machine learning
algorithm that focuses on the strength of relationships
between the various observable variables to produce an output.
It will learn to play poker from a blank state with an implicit
opponent model to decide on a play action without having to
predict the opponent's action explicitly. The goal will be to
determine whether machine learning can benefit the poker
playing performance of AI poker bots as opposed to strategies
based on pure mathematical and statistical calculations, and if
so, how much of a benefit it would be. The project will also
explore the advantages, if any, of the new machine learning
algorithm by comparing and playing rule based and random
chance based poker opponents against it.

2. Texas Hold’em

There are several important aspects to consider when

playing Texas Hold’em. The first is the Pre-Flop Evaluation.
Pre-flop play in Hold’em has been extensively studied in
poker literature[7] and there exists a general strategy to use
for each given pre-flop hand since there are only 1326
possible combinations and 169 distinct hand types for the
initial two cards. Generally, higher ranked cards have a higher
probability to win over lower ranked cards and suited hands
are considered better than cards of different suits, although
this approach largely depends on other several factors such as
a players position from the dealer button, whether the game is
limit or no-limit and how many players are at the table, and
the chances of winning largely depends on the players ability
to decide which action by considering these factors.

Another critical factor when playing Hold’em is the Hand
Strength Assessment during each stage of the game[8]. For
example, suppose we have a hand of A-K and the flop comes
A-J-3. We would have a higher chance of winning over a J-K
hand and our hand strength will be stronger, but a lower
chance to win against a J-3 and thus, a weaker hand. Using a
computer, we are able to simulate all possible hands an
opponent might have and calculate where our hand ranks
among these hands.

A similar but equally important factor to consider is the
Hand Potential[8]. Consider the previous example where our
opponent has J-3. Although our hand strength is weaker, if our
hand was suited and two of the cards on the flop were of the
same suit, we would have a better potential which would most
likely win after the Turn and River. Much like finding our
hand strength, we are able to simulate all possible future
Turns and Rivers and compare our hand against the possible
hands an opponent might have.

Knowing how strong our hand is how do we make an
action decision? The general practice is to use Pot odds[9].
Pot odds percentage is given by the following equation:

Manuscript received Mar. 15. 2010; revised . Aug. 27, 2010;
accepted Sep. 7, 2010

A Learning AI Algorithm for Poker with Embedded Opponent Modeling

171

 Pot Odds = Bet to call / (Total pot + Bet to call)

In other words, pot odds are the ratio of the current size of
the pot to the cost of the contemplated call. For example, if
the pot contains $30, and a player must call $10 to stay in the
hand, then the player has 30-to-10, or 3-to-1 pot odds and a 10
/ (30 + 10) = 0.25 or 25% pot odds percentage. This pot odds
percentage is compared to the probability of winning a hand
with a future card in order to estimate the call's expected value.
If the pot odds are 25% and the calculated chances of your
hand winning is 30%, then you would call the bet because the
pot odds are in your favor (i.e. a larger expected return value).

3. New Graph Based Learning AI

Currently there exist a lot of poker programs, such as

Poki[10][11], Loki[11] or Hyperborean[12], that uses various
AI and machine learning techniques. These programs use an
independent opponent modeling structures which do not
directly produce an action and relies on estimated value
calculations[13]. This results in the performance being too
dependent upon the opponent model. This can be a problem
when the opponent model is outdated, which is usually the
case when not learning in real time. Our goal is to create a
flexible and dynamic strategy learning algorithm that
incorporates opponent modeling so that it can adapt to
different opponents while directly producing an output action.
Thus, a need for a new AI algorithm arises that can memorize
states of a poker game and learn from the mistakes it makes.

3.1. General structure

We need a structure that can hold various states of an
environment and our approach is to use undirected graphs.
Figure 1 shows the general structure of the graphs, here with
two decision choices.

Fig. 1 Graph based learning AI with two decisions

Each graph will represent a single decision. Vertices are
grouped together to represent an attribute where each vertex
in the group is a possible input for that attribute. The weighted
edges will represent the “strength” between the inputs.

Given a set of inputs, we can calculate the summation of
the weighted edges that connect these input vertices and get
an output value for each graph. We can then compare the
graph values to get the strength of each decision when given
these inputs.

After the decision is made, we can apply a positive or
negative reinforcement to the decision by updating the
weights used. For example, when the decision turns out to be
wrong, we subtract a reinforcement value from each of the
weights used and this will be taken into account the next time
any of the same vertices from this set are given as input.
Likewise, for a correct decision, we add a positive
reinforcement value which will affect the strength of this
particular decision the next time a similar input is given. An
example with a simplified decision graphs using XOR is
shown in Fig 2.

Fig. 2 An XOR example

When inputs x and y are different, the weights of the

second graph (5 + 5 = 10) will return a higher value than the
first graph (0 + 0 = 0) indicating that x XOR y = 1. On the
other hand, if x and y have the same bits, the weights of the
first graph will have a larger value indicating that x XOR y =
0.

The intuition behind the structure is that given a set of
inputs, the graph with the most successful, or strongly
connected, state and most vertices and edges similar to the
input relations will return the highest value. The advantage of
this graph is that it can memorize a vast number of states and
also generate multiple values for each of the contemplated
decisions. This is crucial to Hold’em, where each learned
opponent model of any given state still holds valuable
information that can be used in later games. A disadvantage of
this structure is that it requires a long computation time since
each decision requires a graph. But since poker generally has
3 decisions: fold, check/call and bet/raise, this should not be
much of a problem.

Fig 3 shows this decision graph structure applied to a Call
decision for poker.

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 3, September 2010

172

Fig. 3 Decision graph for calls

HS, HP, and HF denote attributes Hand Strength, Hand

Potential, and Hand Future, while SPD and PFD denote the
Hand Strength / Hand Potential Difference and Hand Potential
/ Hand Future Difference, respectively. The bottom attributes
BR, CB, and FB denote Rate of Bets, Calls to Bets, and Folds
to Bets, while the trailing lowercase characters p, f, t, and r
stand for each of the stage pre-flop, flop, turn, and river.
Finally CABA and RABA denote the Call Amount to Bet
Amount and Raise Amount to Bet Amount attributes, all of
which will be explained shortly. Also note that although
omitted in Figure 3, every vertex in an attribute group has an
edge with all the other vertices in different attribute groups.

Because there are a fairly large amount of edges to traverse
and read, the graphs were implemented by mapping the edges
and weights on to matrices instead of an actual graph structure
shown in Fig 3, since the trade off of space for faster
computation time is enormous when it comes to a game like
poker where a decision is also constrained by time.

The attributes that were used for the graphs can largely be
classified into two categories: Hand/State Assessment Inputs
and Opponent Modeling Inputs. These two groups of inputs,
26 attributes in total, goes into the graph and finds the strength
of the relations between attribute values to determine which
decision would be the best to make for any given situation.

3.2. Hand and state assessment inputs
There are a total of 12 attributes that represent the state of

the game. Table 1 shows these attributes. The first is stage,
indicating which stage of the game the play is in and has the
values of Pre- Flop, Flop, Turn and River.

Table 1. Hand and state assessment inputs and their
description

Inputs Description

Stage Pre-Flop, Flop, Turn, River

Stack Power L_Stack/(L_Stack + Op_Stack)
Pot Odds Bet / (Pot + Bet)

Bets to Call # of bets that can be made

Min Bet Min. bet to play

My Bet Opponents bet to call

Pot Pot size

Hand Strength Rank of current hand
Hand Potential Rank of possible hand

Hand Future Rank of hand on River

SP Difference Hand Strength–Hand Potential

PF Difference Hand Potential–Hand Future

Stack Power is the ratio of the learning agents stack

amount over the entire amount of money in the game,
give by:

 Stack Power = L_STACK / (L_STACK + OP_STACK)

where L_STACK is the learning agents stack and
OP_STACK is the opponents stack. This will gauge how well
the learning agent is doing in the game and allow the agent to
change its play style accordingly, since the agent must play
tight when short stacked and bet aggressively when it is
winning.

Pot odds, as explained before, is given as an input so the
agent can decide whether calling a bet or raise is worth the
risk.

Bets to call is the number of bets that can be made. This is a
good indicator to how much commitment the opponent is
making to the pot or to a particular hand. When there are no
bets to call, the opponent has made a full commitment to the
hand and will most likely have a good had. When there are
two or more bets to call, the opponent either has a weak hand
or is slow playing a strong hand.

Min Bet is the minimum bet that has to be called for the
learning agent to stay in play and My Bet is the amount that
the opponent has to call to stay in. Pot is how much money is
currently in the pot. These attributes were used to differentiate
situations and learn how the opponent makes a decision or
how the learner should respond in these situations.

Hand Strength, Hand Potential and Hand Future are the
current hand strength, the hand strength given all possible
cards that can turn up the next stage, and the calculated hand
strength for the stage after, and are by far the most important
factors in the game. Note that the Hand Future value is not
used during a Turn or Flop and Hand Potential is not used

A Learning AI Algorithm for Poker with Embedded Opponent Modeling

173

during the River. These values are calculated by using a Hand
Evaluator and enumerating every possible hand the opponent
might have and all possible hands that can come in the next
stages of the game, then comparing it against the learner’s
hand. Because of the tedious calculations and vast number of
possible hands, this required a fast computational algorithm.
This was implemented using Paul D. Senzee’s pre-computed
perfect hash function on top of Cactus Kev’s Poker Hand
Evaluation technique. Because there are 2.6 million unique
hands, learning algorithms cannot be computed efficiently
without some type of hand evaluator. The basic idea is that of
these 2.6 million unique playable hands, there are only 7462
distinct poker hand values when grouped by their ranking and
this abstraction from unique to distinct allows faster
calculation and less training time for the learner. The trade off
is that the abstraction lessens the accuracy of the learner since
there is a certain level of information loss when converting to
distinct hands, but the disadvantages are minimal compared to
the benefits.

Finally, the SP Difference and PF Difference are the
difference between the hand strength and hand potential, and
the hand potential and hand future, respectively. This is a
good indicator for the possibility of straights or flushes that
can be overlooked by the hand strength, potential and future.

3.3. Opponent modeling inputs

It has been shown that using opponent models produce
significant improvement in performance[17], not just in the
game of poker, but in other games as well[18][19]. The graph
algorithm also takes into account the play style of an opponent,
but “embeds” this into the algorithm as a whole through
inputs, rather than having a separate model. There are a total
of 14 attributes used that distinguishes an opponent. Table 3
shows these attributes.

Table 2. Opponent Modeling Inputs (Attributes) and their
description

Inputs Descriptions
Rate of Bets on Pre-Flop # of Bets / # of Pre-Flops

Rate of Bets on Flop # of Bets / # of Flops

Rate of Bets on Turn # of Bets / # of Turns

Rate of Bets on River # of Bets / # of Rivers

Calls to Bets Pre-Flop # of Calls / # of Pre-Flop Bets

Calls to Bets on Flop # of Calls / # of Flop Bets

Calls to Bets Turn # of Calls / # of Turn Bets

Calls to Bets River # of Calls / # of River Bets

Folds To Bets on Pre-Flop # of Folds / # of Pre-Flop Bets

Folds To Bets on Flop # of Folds / # of Flop Bets

Folds To Bets on Turn # of Folds / # of Turn Bets

Folds To Bets on River # of Folds / # of River Bets

Call Amount to Bet Amount Call Amount / Bet Amount

Raise Amount to Bet Amount Raise Amount / Bet Amount

The Rate of Bets is the ratio of bets made by an opponent in

a particular stage and the number of those stages played. The
Calls to Bets value is the ratio of Calls made by an opponent
to the Bets made by the learner, for each stage. The Folds to
Bets value is the ratio of opponent folds to the learner’s bets.
There are values for each of the four stages and this will help
the learner determine its opponents play style. For example, a
low Rate of Bets value in the Flop stage and a high value in
the River stage could be a good indicator that the opponent
likes to slow play strong hands. A high Folds to Bets value in
the Flop stage could indicate that the opponent does not chase
cards and is thus a conservative type player.

There are two more attributes, the Call Amount to Bet
Amount and the Raise Amount to Bet Amount, which is the
ratio of the opponents call and raise amounts to the learners
bet amount, respectively. This shows on average how much
an opponent is willing to call or how much an opponent will
raise given a bet. It also provides insight into the opponent for
the learner.

3.4. Graph based AI applied to poker

By applying our graph based AI to the poker program we
can assign a graph to each action. 3 types of poker playing
programs were implemented using this AI. Table 4 gives us a
list of the implemented programs.

Table 3. Implemented AIs and Opponents

Learning AI Opponent
6-Value Based AI Aggressive

3-Value Based AI Neutral
3-Value Based AI with Base Strategy Conservative

 Bluff / Base Strategy

The 6-Value Based AI uses 6 graphs, each corresponding to

fold, check/call, bet/raise 0.1, bet/raise 0.2, bet/raise 0.3 and
bet/raise 0.4. The bet/raise actions will match the bet so that
the pot odds for the opponent will match its following decimal
number. For example, if bet/raise 0.2 was chosen with 30$ in
the pot, then a bet will be made such that the pot odds for the
opponent will be 0.2, so the learner will make a bet/raise of
10$:

 Opponent Pod Odds = Bet / (30 + 2 * Bet)= 0.2

B = 30 / 3= 10$

The 3-Value Based AI is similar to the 6-Value Based AI

but it uses 3 graphs, each for fold, check/call, bet/raise instead
and is used for limit Hold’em.

The 3-Value Based AI with Base Strategy uses the 3-Value
Based AI values and a base strategy system with hard coded
values, and the two values are combined at to produce a
decision. Figure 4 shows the architecture of this program.

The attributes are mapped to 5 values: High, High-Medium,
Medium, Medium-Low and Low, then used as input for the
graphs in our AI structure.

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 3, September 2010

174

Fig. 4 3-value based AI with base strategy

Each graph will return a calculated value based on the

weights between the inputs and we can obtain a probability
distribution from these values[11]. Then, by using a random
number generator, we select an action according to its
probability distribution. So if a value of 40 was returned for
fold, 60 was returned for check/call and 100 was returned for
bet/raise, then we fold 20% of the time (40 / (40 + 60 + 100)
= 0.2), check or call 30% of the time and bet or raise 50% of
the time. The advantages of using a probability distribution is
that this will keep the actions random enough so that an
opponent cannot easily find out the strategy used and this will
also prevent getting stuck at a local maximum when searching
for an optimal action. We continue this for every betting
round of each stage of the game until there is a winner. If
round ends with a winner, then we train the decision graphs
with a reinforcement value according to the pot amount that
was won or lost. A large winning will give a strong positive
reinforcement for the actions taken throughout the round and
the same value will be distributed among actions not taken as
negative reinforcement. This is to maintain a balance of
values between the decision graphs and make sure that there is
a lesser probability that other actions are taken. Likewise, a
loss, with the exception of folding, will feed back a negative
reinforcement so that there will be a lesser chance that the
learner makes the same decisions in similar situations, while
the same value will be distributed among other actions as a
positive reinforcement. When the learner folds, there is no
reinforcement, since in poker, there is no way of knowing if
the decision to fold was right or wrong without looking at the
opponents hand.

This AI will require a long time to train compared to
opponent modeling poker programs since rather than learning
an opponent model, it will start by learning how to play poker
and will also learn what strategy to use against specific
opponents and which attributes to look for. Then it uses this
knowledge against new opponents by matching the opponent
type and game state to similar situations encountered during
training. Unlike other poker bots that use machine learning
instances only when in play, this poker program opts for more
of a long term solution by training its self from a blank state
and retaining those experiences for future use. Every game it
plays will also be used as training data at the end of the game,
so it can dynamically adapt to each individual game too.

A problem this algorithm has is determining the accuracy
and errors. Because of the probabilistic nature of Hold’em,
even without the imperfect information aspects of the game, it

is still impossible to find out whether an action was an
optimal decision or not[14]. For example, winning just the
blinds with a strong hand such as a four of a kind is still a win,
but it would not be an optimal solution since decisions to
increase the winning pot size were not taken.

4. Experiments and Analysis

The experiments were conducted with a 1 on 1 heads up
game against each of the opponents to eliminate the decision
factors arising when playing multiple opponents. Also, Pre-
Flop decisions were eliminated and all players were made to
check or call all Pre-flop hands in order to prevent folding the
majority of Pre-Flop hands, which is often the case during
heads up games, and also to maximize the number of actual
plays in different situations.

To obtain meaningful empirical results for the poker
programs, it is necessary to run a series of experiments against
different opponents. Four opponents each with different play
styles were used for the experiments: Aggressive Opponent,
Neutral Opponent and Conservative Opponent, each of their
names being self explanatory. Table 3 gives a list of the
Opponents implemented. Aggressive Opponent bets/raises
aggressively, even with a considerably weak hand, while
Conservative Opponent only bets/raises when it has a very
strong hand and will fold most bets, and Neutral Opponent
falls somewhere between the two. The percentile distribution
for each of the opponents actions were determined by
empirical data based on what is normally seen in common
poker games. No formulae were used to determine these
distributions and in real games, they are often different
depending on the level of poker skill the poker table shows.
Base Opponent was implemented as a neutral type player with
a tendency to bluff with weak hands, and its play strategy was
also used as the base for the 3-Value Based AI with Base
Strategy program.

Many experiments were performed to establish reliable
results and, and only a cross-section of those tests are
presented here.

4.1. Trained 6-value AI vs. opponents
The 6-Value AI was trained against each of its opponents

for exactly 200 rounds before facing its opponents one by one
for another 200 rounds. The results are shown in Fig 5 and Fig
6.

The AI played worse against the Neutral and Conservative
opponents but compensated by showing a stronger
performance against the Aggressive opponent. This was
because the AI combined its experiences against each of the
opponents from training in an attempt to converge to, or more
likely average out to, an optimal strategy that plays well
against all the opponents.

A Learning AI Algorithm for Poker with Embedded Opponent Modeling

175

Fig. 5 Winning pot size ratio of 6-Value Poker AI vs.

Opponents after training 200 rounds with each opponent

Fig. 6 The number of rounds the trained 6-Value Poker AI

won

By training against multiple opponents, the graph structures

should have updated the weights of the common vertices that
affect all types of play, such as hand strength and potential,
while keeping the opponent modeling vertices stale, and thus
increase play performance. But this was not the case as the
winning pot size ratio hovered around 0.0 with a slight
increase at the end. This seemed to be an indicator that there
might have been too many decision graphs compared to the
number of attribute values supplied, and this aspect might
have not been able to show its full potentials within the 200
rounds.

It is also important to note that the 6-Value Poker AI still
played poorly, if not worse, against the Base opponent’s
random bluffing style strategy, and multiple training sessions
did not fix the problem.

4.2. Trained 3-value poker AI vs. opponents

The 3-Value Poker AI structure was trained 200 rounds
against each opponent then played against each opponent for
an additional 200 rounds separately.

Similar to the first experiment, training once again had the
averaging out effect on the 3-Value Poker AI. Notice from Fig
7 that the performance against the Neutral and Conservative
opponent slightly decreased, while there was a much larger
performance boost against both the Base and Aggressive
opponent.

Fig. 7 Winning pot size ratio of 3-Value Poker AI vs.

Opponents after training 200 rounds with each opponent

Fig. 8 The number of rounds the trained 3-Value Poker AI

won

While still not generating a profit, the play strategy

becomes more stable and can hold out for a longer time.
Since the graph based structure requires a lot of training

example while having a wide mixture of various different
opponents to distinguish which attribute vertices are important
in which situation, we shift our focus to creating program so
that it could use the 3-Value Poker AI as a booster to its own
strategy so that the AI will not need to satisfy the requirement
and still be useful. Because the Bases opponents bluffing
strategy was the hard opponent to win against, we will choose
the Base opponent as the base strategy to add on to our AI
(hence the name Base).

4.3. Trained 3-valued poker AI with base strategy vs.
opponents

In our final experiment, we trained the AI along with the
Base Strategy for 200 rounds with each opponent then had it
face each of the opponents for another 200 rounds separately.
Figure 9 and Figure 10 shows the surprising results.

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 3, September 2010

176

Fig. 9 Winning pot size ratio of 3-Valued Ai with Base

Strategy vs. Opponents after training 200 rounds with each
opponend

Fig. 10 The number of hands won by 3-Value AI with Base

Strategy

The AI begins to return profit and does not even get close

to losing. The AI also makes correct decision and converges
to a near optimal value. For example, when playing against
the Conservative Opponent, the AI continues to bet and raise
hard because it knows that the Conservative Opponent will
fold near 90% of the time. Once the Conservative Opponent
bets or raises, the AI knows it has a very strong had and
proceeds to fold.
 Although it will require more training to create a stronger
AI, through these experiments shows that the graphed based
learning structure has great potentials to improve.

5. Conclusion and Future Work

These experiments show that the presented graph based

learning algorithm can be used for poker. Nevertheless, this
algorithm is the first time being used and is in its infant stage.
It has a lot of areas that needs to be worked on. One such are
would be the mapping of continuous values to a discrete
number of vertices. One idea would be to use fuzzy logic and
use functions instead of vertices. Also some aspects of
poker still not researched to the full extent in this paper were
pre-flop strategies and playing against multiple opponents.
The goal of the research was to find out how the new graph
based learning AI can be used and applied to poker, and in a
more general sense, how well machine learning performs in
situations of imperfect information. For those reasons, a lot of

detailed aspects of poker have been omitted and there is still
plenty of room for improvement in this new learning structure.

The new graph based learning AI successfully found
winning strategies to play against different opponents and
showed that it can improve over time. However, this does not
necessarily mean that it will be effective against human
opponent. Humans naturally have the most sophisticated
opponent modeling abilities and can easily change their play
style. This creates a reason to investigate the usage
performance of machines on humans. As seen in the
experiments, random play style was not well classified in
general and this can relate to real life poker situations where
human factors set in. Such would be fatigue, short play time
or dynamically changing opponents at a given table that result
in changing styles for the learner. Also, different strategies
which were not included in the experiment, such as slow plays,
strutting fishing etc, could affect the performance of the
learner.

Poker has a limitless amount of research topics and
as long as poker is around, the research will continue on.

 References

[1] Fürnkranz, J., “Machine Learning in Computer Chess:
The Next Generation”, Austrian Research Institute for
Artificial Intelligence, Vienna, TR-96-11, 1996.

[2] Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu,
P., Szafron, D., “A World Championship Caliber
Checkers Program”, Artificial Intelligence, Vol. 53, No.
2-3, pp.273-290, 1992.

[3] Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A.,
Müller, M., Lake, R., Lu, P., Sutphen, S., “Checkers is
Solved”, Science, Vol. 317, No. 5844, pp.1518 – 1522,
September 2007.

[4] Wu, L., Baldi, P., “A scalable machine learning approach
to Go”, Advances in Neural Information Processing
Systems 19, B. Schölkopf, J. Platt, and T. Hoffman
(ed.), Cambridge, MA: MIT Press, pp. 1521-1528, 2007.

[5] Buro, M., “The Evolution of Strong Othello Programs”,
Entertainment Computing - Technology and Applications,
R. Nakatsu and J. Hoshino (ed.), Kluwer, pp.81-88, 2003.

[6] Buro, M., “How Machines have Learned to Play
Othello”, IEEE Intelligent Systems, Vol. 14(6), pp.12-14,
1999.

[7] Slansky, D., Malmuth, M., Hold’em Poker for Advanced
Players,Two Plus Two Publishing, 1994.

[8] Billings, D., Papp, D., Schaeffer, J. Szafron, D.,
“Opponent Modeling in Poker”, AAAI’98 , Madison,
Wisconsin, pp.493-499, 1998.

[9] Slansky, D., The Theory of Poker, Two Plus Two
Publishing, 1999.

[10] Chopra, A., “Knowledge and Strategy-based Computer
Player for Texas Hold'em Poker”, MS Thesis, University
of Edinburgh, 2006.

[11] Billings, D., Davidson, A., Schaeffer, J. Szafron, D., “The
Challenge of Poker”, Artificial Intelligence, Vol. 134(1-2),
pp.201-240, 2002.

[12] Johanson, M., “Robust Strategies and Counter-Strategies:

A Learning AI Algorithm for Poker with Embedded Opponent Modeling

177

Building a Champion Level Computer Poker Player”, MS
Thesis, University of Alberta, 2007.

[13] Chen, B., Ankenman, J., The Mathematics of Poker,
ConJelCo Publishing, 2006.

[14] Darse Billings, “Algorithms and assessment in Computer
Poker”, Ph.D. dissertation, University of Alberta, 2006.

[15] Davidson, A., Billings, D., Shaeffer, J., Szafron, D.,
“Improved Opponent Modeling in Poker”, ICAI'2000 ,
Las Vegas, Nevada, pp.1467-1473, 2000.

[16] Billings, D., Papp, D., Schaeffer, J., Szafron, D., “Poker
as a Testbed for AI Research”, AI’98 ,Vancouver, BC,
Canada, Vol. 1418, pp.228 – 238, 1998.

[17] Lazaric, A., Quaresimale, M., Restelli, M., “On the
usefulness of opponent modeling: the Kuhn Poker
case study”, Proceedings of the 7th international joint
conference on Autonomous agents and multiagent
systems, Estoril, Portugal, Vol. 3, Pages: 1345-1348, 2008.

[18]Richards, M., Amir, E., “Opponent modeling in scrabble”,
IJCAI, pp. 1482–1487, 2007.

[19] Sheppard, B., “World-championship-caliber scrabble”,
Artificial Intelligence, 134(1-2):241–275, 2002.

Seong-Gon Kim received the B.S. degree
in computer science from University of
Illinois at Urbana-Champaign, Illinois,
U.S.A in 2008, and the M.S. degree in
computer science and engineering from
University of Florida, Florida, U.S.A. in
2010. He is currently a

Researcher/Engineer in LG Electronics User Platform Lab.
His current research interests include machine learning,
pattern recognition, and intelligent robotics.

Yong-Gi Kim received the B.S. degree in
electrical engineering from Seoul National
University, Seoul, Korea in 1978, the M.S.
degree in computer science from
University of Montana, U.S.A. in 1987,
and the Ph.D. degrees in computer and
information sciences from Florida State
University, U.S.A. in 1991. He was a

Visiting Scholar in the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign,
Illinois, U.S.A., from 2008 to 2009. He is currently a
Professor in the Department of Computer Science,
Gyeongsang National University, Korea. His current research
interests include soft computing, intelligent systems and
autonomous underwater vehicles.

