We present AB9, a neural processor for inference acceleration. AB9 consists of a systolic tensor core (STC) neural network accelerator designed to accelerate artificial intelligence applications by exploiting the data reuse and parallelism characteristics inherent in neural networks while providing fast access to large on-chip memory. Complementing the hardware is an intuitive and user-friendly development environment that includes a simulator and an implementation flow that provides a high degree of programmability with a short development time. Along with a 40-TFLOP STC that includes 32k arithmetic units and over 36 MB of on-chip SRAM, our baseline implementation of AB9 consists of a 1-GHz quad-core setup with other various industry-standard peripheral intellectual properties. The acceleration performance and power efficiency were evaluated using YOLOv2, and the results show that AB9 has superior performance and power efficiency to that of a general-purpose graphics processing unit implementation. AB9 has been taped out in the TSMC 28-nm process with a chip size of 17 × 23 ㎟. Delivery is expected later this year.
With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.
M&S의 발전과 더불어 국방 M&S등 인간의 의사결정을 포함하는 분야의 요구가 증대되는 현실에서 AI기술을 활용한 모델링 연구가 각광받고 있다. AI는 복잡한 문제 해결을 위한 방법임은 분명하나 M&S에서 요구되는 입력시점과 처리시간 등의 논리적 시간을 고려하지 않았다. 따라서 본 논문에서는 대표적인 AI 기술인 규칙기반 전문가시스템을 논리적 시간을 고려한 규칙구조 "IF-THEN-AFTER"와 추론엔진으로 재설계한 시간기반의 전문가 시스템을 제안하고, 기존의 규칙기반 전문가 시스템과의 차이를 설명하기 위한 간단한 예제를 들어 논리적 분석을 시도하였다. 그 결과로 제안하는 시간기반의 전문가 시스템 모델은 일반적인 규칙기반 전문가시스템과 다르게 입력시점과 추론시간에 따라 다른 결과를 보임을 알 수 있으며, 이는 M&S에서 요구되는 논리적 시간을 고려한 AI의 문제해결이 가능함을 의미한다.
The rapid growth of deep-learning applications has invoked the R&D of artificial intelligence (AI) processors. A dedicated software framework such as a compiler and runtime APIs is required to achieve maximum processor performance. There are various compilers and frameworks for AI training and inference. In this study, we present the features and characteristics of AI compilers, training frameworks, and inference engines. In addition, we focus on the internals of compiler frameworks, which are based on either basic linear algebra subprograms or intermediate representation. For an in-depth insight, we present the compiler infrastructure, internal components, and operation flow of ETRI's "AI-Ware." The software framework's significant role is evidenced from the optimized neural processing unit code produced by the compiler after various optimization passes, such as scheduling, architecture-considering optimization, schedule selection, and power optimization. We conclude the study with thoughts about the future of state-of-the-art AI compilers.
실시간 처리 및 프라이버시 강화를 위해 인공지능 모델을 엣지에서 동작시킬 수 있는 온디바이스 AI 기술이 각광받고 있다. 지능형 사물인터넷 기술이 다양한 산업에 적용되면서 온디바이스 AI 기술을 활용한 서비스가 크게 증가하고 있다. 그러나 일반적인 딥러닝 모델은 추론 및 학습을 위해 많은 연산 자원을 요구하고 있다. 따라서 엣지에 적용되는 경량 기기에서 딥러닝 모델을 동작시키기 위해 양자화나 가지치기와 같은 다양한 경량화 기법들이 적용되어야 한다. 본 논문에서는 다양한 경량화 기법 중 가지치기 기술을 중심으로 엣지 컴퓨팅 기기에서 딥러닝 모델을 경량화하여 적용할 수 있는 방안을 분석한다. 특히, 동적 및 정적 가지치기 기법을 적용하여 경량화된 비전 모델의 추론 속도, 정확도 그리고 메모리 사용량을 시험한다. 논문에서 분석된 내용은 실시간 특성이 중요한 지능형 영상 관제 시스템이나 자율 이동체의 영상 보안 시스템에 적용될 수 있다. 또한 사물인터넷 기술이 적용되는 다양한 서비스와 산업에 더욱 효과적으로 활용될 수 있을 것으로 기대된다.
본 논문에서는 엣지 컴퓨팅 환경에서 MicroVM의 AI 애플리케이션 수행 시 성능을 분석하고, 이것이 현재 사용되고 있는 컨테이너 기술과 전통적인 가상머신을 대체할 수 있는지 알아본다. 이를 위해 라즈베리파이 4에서 Docker 컨테이너, Firecracker MicroVM, KVM 가상머신 환경을 각각 구축하고 대표적인 AI 애플리케이션들을 실행하였다. 그리고 실험 환경별로 추론 시간, 총 CPU 사용량 및 추세, 파일 I/O 성능을 분석하였다. 실험 결과, MicroVM에서 AI 애플리케이션을 수행하였을 때 컨테이너와의 큰 성능 차이는 없었으며, 오히려 반복적인 애플리케이션 수행에서 평균적으로 안정적인 추론 시간을 확인할 수 있었다. 따라서, 본 연구를 통해 엣지 컴퓨팅 환경에서 컨테이너와 가상머신을 대체하여 MicroVM을 사용한 AI 애플리케이션 운용이 적합할 수 있다는 것을 확인하였다.
AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.
As the increasing expectations of a practical AI (Artificial Intelligence) service makes AI algorithms more complicated, an efficient processor to process AI algorithms is required. To meet this requirement, processors optimized for parallel processing, such as GPUs (Graphics Processing Units), have been widely employed. However, the GPU has a generalized structure for various applications, so it is not optimized for the AI algorithm. Therefore, research on the development of AI processors optimized for AI algorithm processing has been actively conducted. This paper briefly introduces an AI processor especially for inference acceleration, developed by the Electronics and Telecommunications Research Institute, South Korea., and other global vendors for mobile and server platforms. However, the GPU has a generalized structure for various applications, so it is not optimized for the AI algorithm. Therefore, research on the development of AI processors optimized for AI algorithm processing has been actively conducted.
인공지능이 발전하면서 AI 챗봇 시스템의 활용이 활발히 이루어지고 있다. 그 예로 공공기관에서는 민원, 행정 분야에서 업무 보조, 전문지식 서비스 등으로 챗봇 활용 분야가 확대되고 있으며 민간기업은 대화형 고객 응대 서비스 등으로 챗봇을 활용하고 있다. 본 연구에서는 시나리오 기반의 AI 음성 챗봇 시스템을 제안하여 박물관의 운영 비용을 절감하고 관람객에게 양방향성 안내 서비스를 제공하고자 한다. 구현한 음성 챗봇 시스템은 실시간으로 특정 디렉터리를 감시하여 사용자의 음성을 감지하는 감시자 객체와 음성 파일이 생성되면 순차적으로 모델별 추론을 수행하여 AI의 응대 음성을 출력하는 이벤트 핸들러 객체로 구성되며, 스레드와 데크를 활용한 중복 방지 기능을 포함하여 단일 GPU 환경에서 추론 중에 GPU의 연산이 중복되지 않도록 한다.
This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.