• Title/Summary/Keyword: AI Importance

Search Result 320, Processing Time 0.023 seconds

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation (데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선)

  • Baek, Won-Kyung;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1663-1676
    • /
    • 2022
  • Recently, a number of deep-learning based land cover segmentation studies have been introduced. Some studies denoted that the performance of land cover segmentation deteriorated due to insufficient training data. In this study, we verified the improvement of land cover segmentation performance through data augmentation. U-Net was implemented for the segmentation model. And 2020 satellite-derived landcover dataset was utilized for the study data. The pixel accuracies were 0.905 and 0.923 for U-Net trained by original and augmented data respectively. And the mean F1 scores of those models were 0.720 and 0.775 respectively, indicating the better performance of data augmentation. In addition, F1 scores for building, road, paddy field, upland field, forest, and unclassified area class were 0.770, 0.568, 0.433, 0.455, 0.964, and 0.830 for the U-Net trained by original data. It is verified that data augmentation is effective in that the F1 scores of every class were improved to 0.838, 0.660, 0.791, 0.530, 0.969, and 0.860 respectively. Although, we applied data augmentation without considering class balances, we find that data augmentation can mitigate biased segmentation performance caused by data imbalance problems from the comparisons between the performances of two models. It is expected that this study would help to prove the importance and effectiveness of data augmentation in various image processing fields.

A Study on the Entry of the Domestic Cold Chain Industry into the UN Procurement Market (국내 콜드체인 산업의 유엔 조달시장 진출방안)

  • Shin, Seok-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.333-345
    • /
    • 2021
  • Amid the rapidly changing logistics environment and demand changes in the post-corona-19 era, the importance of the cold chain logistics sector is being highlighted. The scope of cold chain is not limited to food, but is expanding to various fields such as pharmaceuticals, semiconductors, and flowers. The demand on the storage and transportation of corona vaccines is rapidly increasing. The rapid increase in domestic low-temperature facility construction and renovation may lead to the saturation of the cold chain related industry in the future and slow growth. In preparation for this, it is necessary to accumulate infrastructure know-how using IT technologies, and to consider entering into the UN procurement market as a potential niche market, by taking advantage of Korea's recent global status. The demand for cold chain in the UN procurement market is increasing mainly in underdeveloped countries, and it is expected to continue to grow. In this paper, the capabilities of domestic cold chain related companies were analyzed, domestic and overseas cold chain logistics market trends and overseas market entry status were investigated. An in-depth survey was conducted to present strategies for domestic cold chain logistics related companies to enter the UN procurement market.

Textile material classification in clothing images using deep learning (딥러닝을 이용한 의류 이미지의 텍스타일 소재 분류)

  • So Young Lee;Hye Seon Jeong;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.43-51
    • /
    • 2023
  • As online transactions increase, the image of clothing has a great influence on consumer purchasing decisions. The importance of image information for clothing materials has been emphasized, and it is important for the fashion industry to analyze clothing images and grasp the materials used. Textile materials used for clothing are difficult to identify with the naked eye, and much time and cost are consumed in sorting. This study aims to classify the materials of textiles from clothing images based on deep learning algorithms. Classifying materials can help reduce clothing production costs, increase the efficiency of the manufacturing process, and contribute to the service of recommending products of specific materials to consumers. We used machine vision-based deep learning algorithms ResNet and Vision Transformer to classify clothing images. A total of 760,949 images were collected and preprocessed to detect abnormal images. Finally, a total of 167,299 clothing images, 19 textile labels and 20 fabric labels were used. We used ResNet and Vision Transformer to classify clothing materials and compared the performance of the algorithms with the Top-k Accuracy Score metric. As a result of comparing the performance, the Vision Transformer algorithm outperforms ResNet.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Characteristics and Meaning of Yongsan Family Park - Based on the Public Records of Seoul - (용산가족공원 조성 과정의 특성과 의미 - 서울시 기록을 중심으로 -)

  • Choi, Hyeyoung;Lee, Sang Min;Gil, Jihye;Kim, Jung-Hwa;Park, Hee-Soung;Seo, Young-Ai
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • The ongoing Yongsan Park development project began in 1988 with the development of a utilization plan for the US Army base in Yongsan after the Army relocation. This study aimed to draw implications for the Yongsan Park project by focusing on Yongsan Family Park. Among the public records of Yongsan Park and Yongsan Family Park transferred to the Seoul Metropolitan Archives, 53 major records were analyzed. The results are as follows. First, Yongsan Family Park, built on the site of the US Army golf course in 1992, was considered a part of the Yongsan Park plan and holds status as the first phase of the Yongsan Park project. Second, despite its status, Yongsan Family Park opened as a temporary park occupied by urban facilities. A design and detailed roadmap of the development process is necessary to make Yongsan Park more resilient. Third, organizing and systematizing public records is necessary because lessons learned through past park development processes can be applied to the current project. This study is meaningful since it uncovered important issues of urban planning discussed in the process of Yongsan Family Park development through a complete analysis of public records, examined the linkage between Yongsan Family Park, which was not known until now, and the ongoing Yongsan Park project, and reaffirmed the importance of park archiving for long-term development projects.

A Study on the Concept and Characteristics of Metaverse based NFT Art - Focused on <Hybrid Nature> (메타버스 기반 NFT 아트 작품 사례 연구 - <하이브리드 네이처>를 중심으로)

  • Bosul Kim;Min Ji Kim
    • Trans-
    • /
    • v.14
    • /
    • pp.1-33
    • /
    • 2023
  • In the Web 3.0 era, the third generation of web technologies that uses blockchain technology to give creators ownership of data, metaverse is a crucial trend for developing a creator economy. Web 3.0 aims for a value in which content creators are compensated from participation without being dependent on the platform. Blockchain NFT technology is crucial in metaverse, a vital component of Web 3.0, to ensure the ownership of digital assets. Based on the theory that investigates the concept and characteristics of metaverse, this study identifies five features of the metaverse based NFT art ①'Continuity', ②'Presence', ③ 'Concurrency', ④'Economy', ⑤ 'Application of technology'. By focusing on metaverse based NFT art <Hybrid Nature> case study, we analyzed how the concepts and characteristics of the metaverse and NFT art were reflected in the work. This study focuses on the concept of NFT art, which is emerging at the intersection of art, technology and industry, and emphasizes the importance of finding creative, aesthetic, and cultural values rather than the NFT art's potential for financial gain. It is still in its early stage for academic studies to focus on the aesthetic qualities of NFT art. Future academics and researchers can find this study to gain deeper understanding of the traits and artistic, creative aspects of metaverse based NFT art.

Development and Application of Statistical Programs Based on Data and Artificial Intelligence Prediction Model to Improve Statistical Literacy of Elementary School Students (초등학생의 통계적 소양 신장을 위한 데이터와 인공지능 예측모델 기반의 통계프로그램 개발 및 적용)

  • Kim, Yunha;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.717-736
    • /
    • 2023
  • The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.

A Study on the evaluation technique rubric suitable for the characteristics of digital design subject (디지털 디자인 과목의 특성에 적합한 평가기법 루브릭에 관한 연구)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.525-530
    • /
    • 2023
  • Digital drawing subjects require the subdivision of evaluation elements and the graduality of evaluation according to the recent movement of the innovative curriculum. The purpose of this paper is to present the criteria for evaluating the drawing and to propose it as a rubric evaluation. In the text, criteria for beginner evaluation were technical skills such as the accuracy and consistency of the line, the ratio and balance of the picture, and the ability to effectively utilize various brushes and tools at the intermediate levels. In the advanced evaluation section, it is a part of a new perspective or originality centered on creativity and originality, and a unique perspective or interpretation of a given subject. In addition, as an understanding of design principles, the evaluation of completeness was derived focusing on the ability to actively utilize various functions of digital drawing software through design principles such as placement, color, and shape. The importance of introducing rubric evaluation is to allow instructors to make objective and consistent evaluations, and the key to research in rubric evaluation in these art subjects is to help learners clearly grasp their strengths and weaknesses, and learners can identify what needs to be improved and develop better drawing skills accordingly through feedback on each item.