• 제목/요약/키워드: AI Dataset

검색결과 259건 처리시간 0.028초

코로나19로 또래와 단절된 아동을 위한 인공지능 낙서 로봇 제안 (Proposal of AI-based Graffiti Robot for Children disconnected from Peers with COVID-19)

  • 송주연;이강희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.29-31
    • /
    • 2020
  • 본 논문에서는 코로나19 사태로 인한 팬데믹(pandemic) 현상으로 인해 또래와 단절된 아동들의 정서발달을 위해 인공지능 낙서 로봇인 Doodle Robot을 제안한다. Doodle Robot은 또래 형제가 없는 아동에게 함께 그림을 그릴 수 있는 그림친구로서 아동의 정서적 발달에 기여한다. YOLO 알고리즘을 사용하여 객체검출기능을 구현하였고 낙서 Data는 Quick! Draw Dataset에서 추출하였다.

  • PDF

인공지능에서 저작권과 라이선스 이슈 분석 (Analysis of Copyright and Licensing Issues in Artificial Intelligence)

  • 류원옥;이승윤;정성인
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.84-94
    • /
    • 2023
  • Open source has many advantages and is widely used in various fields. However, legal disputes regarding copyright and licensing of datasets and learning models have recently arisen in artificial intelligence developments. We examine how datasets affect artificial intelligence learning and services from the perspective of copyrighting and licensing when datasets are used for training models. The licensing conditions of datasets can lead to copyright infringement and license violation, thus determining the scope of disclosure and commercialization of the trained model. In addition, we examine related legal issues.

인공신경망을 이용한 샷 사이즈 분류를 위한 ROI 탐지 기반의 익스트림 클로즈업 샷 데이터 셋 생성 (Generating Extreme Close-up Shot Dataset Based On ROI Detection For Classifying Shots Using Artificial Neural Network)

  • 강동완;임양미
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.983-991
    • /
    • 2019
  • 본 연구는 영상 샷의 크기에 따라 다양한 스토리를 갖고 있는 영상들을 분석하는 것을 목표로 한다. 따라서 영상 분석에 앞서, 익스트림 클로즈업 샷, 클로즈업 샷, 미디엄 샷, 풀 샷, 롱 샷 등 샷 사이즈에 따라 데이터셋을 분류하는 것이 선행되어야 한다. 하지만 일반적인 비디오 스토리 내의 샷 분포는 클로즈업 샷, 미들 샷, 풀 샷, 롱 샷 위주로 구성되어 있기 때문에 충분한 양의 익스트림 클로즈업 샷 데이터를 얻는 것이 상대적으로 쉽지 않다. 이를 해결하기 위해 본 연구에서는 관심 영역 (Region Of Interest: ROI) 탐지 기반의 이미지 크롭핑을 통해 익스트림 클로즈업 샷을 생성함으로써 영상 분석을 위한 데이터셋을 확보 방법을 제안한다. 제안 방법은 얼굴 인식과 세일리언시(Saliency)를 활용하여 이미지로부터 얼굴 영역 위주의 관심 영역을 탐지한다. 이를 통해 확보된 데이터셋은 인공신경망의 학습 데이터로 사용되어 샷 분류 모델 구축에 활용된다. 이러한 연구는 비디오 스토리에서 캐릭터들의 감정적 변화를 분석하고 시간이 지남에 따라 이야기의 구성이 어떻게 변화하는지 예측 가능하도록 도움을 줄 수 있다. 향후의 엔터테인먼트 분야에 AI 활용이 적극적으로 활용되어질 때 캐릭터, 대화, 이미지 편집 등의 자동 조정, 생성 등에 영향을 줄 것이라 예상한다.

딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가 (Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning)

  • 김경남;김선종
    • 문화기술의 융합
    • /
    • 제8권2호
    • /
    • pp.385-391
    • /
    • 2022
  • 소도체의 품질평가는 축산업 분야의 중요한 문제이다. 최근 인공지능을 기반으로 한 AI 모니터 시스템을 통해 품질 관리사는 소도체 영상의 분석이나 결과 정보를 기반으로 정확한 판단에 도움을 받을 수 있다. 이러한 인공지능의 데이터셋은 성능을 판단하는 중요한 요소이다. 기존의 데이터셋은 표면의 방향이나 해상도가 달라질 수 있다. 본 논문에서는 딥러닝을 이용한 소도축 영상의 등급을 효율적으로 관리할 수 있는 단계별 분류 모델을 제안하였다. 그리고 기존의 세그멘테이션 추출된 영상의 데이터셋의 다양한 조건의 일관성을 위해 새로운 데이터셋 1,300장을 구성하였다. 새로운 데이셋을 이용한 5등급 분류에 대한 딥러닝의 인식률은 72.5%를 얻었다. 제안된 단계별 분류는 1++, 1+, 1등급과 2, 3등급의 차이가 크다는 것을 이용한 방안이다. 이로 인해 제안된 2단계 모델의 두 가지 방법에 따른 실험 결과, 73.7%, 77.2%의 인식률을 얻을 수 있었다. 이처럼 1단계 인식률을 100%를 갖는 데이터셋을 가진다면 더욱 효율적인 방법이 될 것이다.

폐암 선암 생존시간 예측을 위한 병리학적 영상분석 (Survival Time Prediction for Adenocarcinoma Lung Cancer based on Pathological Image Analysis)

  • 보티트엉비;김애라;이태범;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.779-782
    • /
    • 2021
  • Survival time analysis is one of the main methods used by the pathologist to prognosis for cancer patients. In this paper, we strive to estimate the individual survival time of Adenocarcinoma (ADC) lung cancer patients from pathological images by adopting the convolutional neural network called the SurvPatchV1 model. First, we extracted tissue patches from the whole-slide images (WSI) to deal with extremely large dimensions of WSI. Then the survival time of each patch is estimated through the SurvPatchV1 model. Finally, the individual survival time of each patient is computed. The proposed method is trained and tested on the subset of the NLST dataset for ADC lung cancer. The result demonstrates that our model can obtain all tissue information in lieu of only tumor information in a whole pathological image to estimate the individual survival time.

개인정보 특화 개체명 주석 대화 데이터셋 기반 생성AI 활용 개체명 탐지 (Named Entity Detection Using Generative Al for Personal Information-Specific Named Entity Annotation Conversation Dataset)

  • 강예지;비립;장연지;박서윤;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.499-504
    • /
    • 2023
  • 본 연구에서는 민감한 개인정보의 유출과 남용 위험이 높아지고 있는 상황에서 정확한 개인정보 탐지 및 비식별화의 효율을 높이기 위해 개인정보 항목에 특화된 개체명 체계를 개발하였다. 개인정보 태그셋이 주석된 대화 데이터 4,981세트를 구축하고, 생성 AI 모델을 활용하여 개인정보 개체명 탐지 실험을 수행하였다. 실험을 위해 최적의 프롬프트를 설계하여 퓨샷러닝(few-shot learning)을 통해 탐지 결과를 평가하였다. 구축한 데이터셋과 영어 기반의 개인정보 주석 데이터셋을 비교 분석한 결과 고유식별번호 항목에 대해 본 연구에서 구축한 데이터셋에서 더 높은 탐지 성능이 나타났으며, 이를 통해 데이터셋의 필요성과 우수성을 입증하였다.

  • PDF

Marine life Image Recognition using Deep Learning

  • Jiyun Hong;Jiwon Lee;Somin Lee;Eun Ko;Gyubin Kim;Jungwoon Kang;Mincheol Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권3호
    • /
    • pp.221-230
    • /
    • 2024
  • The aim of this study is to investigate the automatic recognition and analysis of Jeju marine-life images using artificial intelligence (AI) technology. The dataset of marine-life images was prepared using tools such as Python, TensorFlow, and Google Colab (Google Colaboratory). We also developed models by training deep learning AI in image recognition to automatically recognize the species found in these images and extract their associated information, such as taxonomy, characteristics, and distribution. This study is innovative in that it uses deep learning technology combined with imagerecognition technology for marine biodiversity research. In addition, these results will lead to the development of the marine-life industry in Jeju by supporting marine environment monitoring and marine resource conservation. Furthermore, this study is anticipated to contribute to academic advancement, specifically in the study of marine species diversity.

드론과 인공지능을 활용한 실종자 탐색에 관한 연구 (A Study on detection of missing person using DRONE and AI)

  • 김경목;전호범;임건선
    • 보건의료생명과학 논문지
    • /
    • 제10권2호
    • /
    • pp.361-367
    • /
    • 2022
  • 본 연구는 4차산업혁명 시대를 대표하는 인공지능을 드론에 탑재하여 실시간 이미지 정보를 획득하고 건강상, 또는 실신 등 응급을 요 하는 사람을 탐색함으로써 사각지대를 최소화하고 탐색의 효율성을 높이는데 그 목적이 있다. 본 연구는 드론에 영상정보 획득 장치를 탑재하고 미디어 서버에 전송 후 프레임 단위의 인공지능 학습 알고리즘을 적용하여 사람 인식 결과를 분석 후 해당 GPS 정보를 획득하는 절차로 진행된다. 최근 소개된 여러 인공지능 알고리즘 중에서 대표되는 YOLO 알고리즘을 적용하여 마네킹 또는 실제 이미지를 학습함으로써 신뢰도 높은 실험 결과를 보였으며 드론의 활용범위가 확대됨에 따라 인간의 접근 사각지대에서 그 역할이 확대될 것으로 기대된다. 논문의 구성은 임무 수행을 위한 드론의 사양을 소개하고 인공지능의 개념 및 활용 방법, 실제 드론 비행을 통한 이미지 획득 및 결과 분석 그리고 향후 활용범위로 기술하였다.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증 (Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers)

  • 강영진;노태경;김기환;정석찬
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.49-59
    • /
    • 2023
  • 제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.