AI is recognized to be a key technology for digital transformation (DT) and the value of AI is considered to determine the future of the company. However, in reality, although managers acknowledge the future value of AI and have plans to introduce it, most are not sure what to expect from AI or how to apply it to their business. This study compares two company cases to demonstrate how an organization has successfully achieved AI led organizational change while another failed. Specifically, by taking institutionalist's view, this study examines how the legitimacy enables and constrains AI led organizational changes in organization's practices, processes, and infrastructure. The results of this study indicate that for the success of AI led organizational changes, the legitimacy plays an important role by reducing the challenges from stakeholders and increasing the institutional momentum to move through the phases of the change.
Artificial intelligence (AI) has rapidly diffused across industries and societies as nations' essential strategic technology. In innovative technology, such as AI, a startup leads to technological innovation and significantly impacts the expansion of relevant industries. Thus, this study examined the trend of AI startup venture capital (VC) investments globally, focusing on ① noteworthy VC investment statuses (the number and size of the investment, company establishment, and corporate collection), ② the characteristics of each key nation's investments, and ③ the characteristics of each submarket's investments. Among the 11 countries, the results showed that Korea ranked near the bottom for absolute quantitative measures, including the number and size of investments, company establishment, and corporate collection. However, Korea has built a foundation of catching up with what AI-leading countries have established, considering Korea's high growth rate in the number and size of investments and a recent mega-round. This study has practical implications in that it determined the AI startup VC investment status of Korea's rival countries, not only G2 (US and China). The results can be used in policy-making. Furthermore, identifying the AI industry's submarkets and analyzing each market's VC investment status could be used to establish strategies for the AI industry and R&D.
This research is on how people's trust in human-like AI-based service will influence customer engagement (CE). This study will discuss the relationship between trust and CE and explore how people's trust in AI affects CE when they lack knowledge of the company/brand. Items from the philosophical study of trust were extracted to build a scale suitable for trust in AI. The scale's reliability was ensured, and six components of trust in AI were merged into three dimensions: trust based on Quality Assurance, Risk-taking, and Corporate Social Responsibility. Trust based on quality assurance and risk-taking is verified to positively impact customer engagement, and the feelings about AI-based service fully mediate between all three dimensions of trust in AI and CE. The new trust scale for human-like AI-based services on social media sheds light on further research. The relationship between trust in AI and CE provides a theoretical basis for subsequent research.
Rapid development of information and communication technology is leading the digital transformation (hereinafter, DT) of various industries. At this point in rapid online transition, fashion manufacturers operating offline-oriented businesses have become highly interested in DT and artificial intelligence (hereinafter AI), which leads DT. The purpose of this study is to examine the development status and application case of AI-based digital technology developed for the fashion industry, and to examine the DT stage and AI application status of domestic fashion manufacturers. Hence, in-depth interviews were conducted with five domestic IT companies developing AI technology for the fashion industry and six domestic fashion manufacturers applying AI technology. After analyzing interviews, study results were as follows: The seven major AI technologies leading the DT of the fashion industry were fashion image recognition, trend analysis, prediction & visualization, automated fashion design generation, demand forecast & optimizing inventory, optimizing logistics, curation, and ad-tech. It was found that domestic fashion manufacturers were striving for innovative changes through DT although the DT stage varied from company to company. This study is of academic significance as it organized technologies specialized in fashion business by analyzing AI-based digitization element technologies that lead DT in the fashion industry. It is also expected to serve as basic study when DT and AI technology development are applied to the fashion field so that traditional domestic fashion manufacturers showing low growth can rise again.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권2호
/
pp.111-118
/
2016
Artificial intelligence (AI) is making computer systems intelligent to do right thing. The AI is used today in a variety of fields, such as journalism, medical, industry as well as entertainment. The impact of AI is becoming larger day after day. In general, the AI system has to lead the optimal decision under uncertainty. But it is difficult for the AI system can derive the best conclusion. In addition, we have a trouble to represent the intelligent capacity of AI in numeric values. Statistics has the ability to quantify the uncertainty by two approaches of frequentist and Bayesian. So in this paper, we propose a methodology of the connection between statistics and AI efficiently. We compute a fixed value for estimating the population parameter using the frequentist learning. Also we find a probability distribution to estimate the parameter of conceptual population using Bayesian learning. To show how our proposed research could be applied to practical domain, we collect the patent big data related to Apple company, and we make the AI more intelligent to understand Apple's technology.
This literature review explores artificial intelligence (AI) technology trends and IBM Watson health and medical references. This study explains how healthcare will be changed by the evolution of AI technology, and also summarizes key technologies in AI, specifically the technology of IBM Watson. We look at this issue from the perspective of 'information overload,' in that medical literature doubles every three years, with approximately 700,000 new scientific articles being published every year, in addition to the explosion of patient data. Estimates are also forecasting a shortage of oncologists, with the demand expected to grow by 42%. Due to this projected shortage, physicians won't likely be able to explore the best treatment options for patients in clinical trials. This issue can be addressed by the AI Watson motivation to solve healthcare industry issues. In addition, the Watson Oncology solution is reviewed from the end user interface point of view. This study also investigates global company platform business to explain how AI and machine learning technology are expanding in the market with use cases. It emphasizes ecosystem partner business models that can support startup and venture businesses including healthcare models. Finally, we identify a need for healthcare company partnerships to be reviewed from the aspect of solution transformation. AI and Watson will change a lot in the healthcare business. This study addresses what we need to prepare for AI, Cognitive Era those are understanding of AI innovation, Cloud Platform business, the importance of data sets, and needs for further enhancement in our knowledge base.
최근 활성화 되고 있는 인슈어테크(InsurTech) 산업에서의 인공지능(AI)을 활용한 보험서비스 마케팅 사례연구를 통해, 보험산업 생태계에서 혁신적인 기술(예: 인공지능, 기계학습 등)이 어떻게 활용되고 있는지 살펴보았다. 특히, 국내·외 서비스 사례연구를 통해 인공지능기술을 활용하여 파괴적 혁신을 가져온 미국의 레모네이드(Lemonade)사의 챗봇을 이용한 신속하고, 간편한 보험가입 및 보험금 지급 서비스, 국내 AI컴퍼니의 광학 문자 인식(OCR)기반의 진단서 입력을 통해 예상 보험금이 산출되는 보험금 산정서비스를 고찰해 보았다. 사례분석 결과 인공지능 기반의 수많은 고객데이터를 활용한 기계학습을 통해 보험 가입 및 지급 절차에 있어 리드타임을 획기적으로 단축하였고, 고객과 보험사간의 분쟁이 많은 보험금 산정에 있어서도 정확하고 합리적인 보험금을 산출함으로써, 고객만족과 고객가치를 높일 수 있었다.
본 논문에서는 SK텔레콤에서 진행하는 디지털 선도기업 아카데미 FLYAI의 교육과정을 설계하고 개발한다. 이 교육과정은 Project Based Learning(272시간)과 Product Based Learning(128시간)으로 구성하여 총 400시간을 교육하도록 설계한다. 특히 Product Based Learning의 AI-Hackathon(80시간)에서는 SK텔레콤 각 부서에서 제안하는 제픔을 기획하고 개발하는 과정으로 SK텔레콤 AI 개발자들이 멘토로 참여함으로써 기업 현장의 경험을 체험할 수 있도록 개발한다.
본 연구에서는 인공지능 로보어드바이저의 활용 증가로 인한 부작용을 최소화하고 금융소비자 및 시장을 보호하기 위해 필요한 현행 법체계의 제도적 보완점에 관하여 주로 검토하였다. 먼저, 개별적인 보완점으로서, 로보어드바이저 운용사에 대한 이상거래 신속 탐지체계 구축 의무의 도입, 운용사의 무과실책임 도입, 운용사의 손해배상보험 의무가입제도 도입, 형사처벌의 부분적인 도입 등이 필요하고, 더 나아가 인공지능에 관한 포괄적인 기본법의 제정이 필요하다. 포괄적인 기본법에서는 인공지능 기술 발전을 장려하기 위한 측면과 부작용을 최소화하기 위한 측면이 조화롭게 다루어져야 할 것이다. 본 연구에서의 접근법과 마찬가지로 향후 다양한 관점에서 인공지능 시대에 대한 구체적이고 실질적인 논의가 진행되기를 기대한다.
최근의 팬데믹 상황에서 인공지능의 중요성은 더욱 부각되고 있으며, 주요국은 AI 기술주도권 확보를 위하여 노력 중이다. 한국 정부도 AI경쟁력 확보를 위한 사업을 추진하며 정부투자를 지속적으로 확대하고 있다. 산업 육성을 위한 정부사업의 효율적인 운영이 중요함에도 불구하고 이와 관련한 연구는 미미한 실정이다. 이에 본 연구는 AI 분야의 대표적인 정부 사업인 AI 바우처 지원사업의 개선방안을 분석하고 제안한다. 지원사업 참여기업을 대상으로 인터뷰를 수행하였으며, 내용 분석을 통하여 사업 추진과정의 이슈를 파악하고, 개선방안을 사업 준비, 진행, 종료 및 사후관리의 단계별로 제시하였다. 본 연구는 AI의 중요성이 증가하는 시점에 성공적인 AI산업 육성을 위한 정부 지원사업의 개선방안을 제시하는데 의의를 둔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.