길이 좁고 차도와 인도의 구분이 없는 골목길의 특성상 사각지대가 많고 보행자의 동선을 예측하기 힘들어 교통사고가 많이 발생하고 있다. 따라서 본 논문에서는 AI 를 활용, 영상 내 사물을 추적하여 골목길에서의 사고를 예방하는 시스템을 제안한다. 해당 시스템은 Object - Detection & Tracking 을 사용하여 보행자 및 차량을 식별·추적하여 두 개 이상의 사물이 동시에 교차로에 접근 시 사고 예방 알람을 발생시킨다. 이 시스템을 전국에 설치되어 있는 CCTV 에 활용하면 추가적인 비용과 설치 시간에 제한받지 않고 전국적으로 응용할 수 있을 것으로 기대된다.
무인 매장의 수가 점점 증가하며 보안과 비용 절감을 위한 솔루션들이 요구되고 있고, 시스템은 이를 해결하기 위한 다중 객체 추적 알고리즘을 제안한다. 한 대의 카메라에서 여러 사용자를 인식하고, 사용자의 정보를 서버에 저장해 주변 카메라에 전달함으로써 적은 카메라 수로 많은 사용자를 추적할 수 있게 한다.
본 논문에서는 엣지 컴퓨팅에서 다수의 스마트 카메라를 클러스터링하여 협업하며 로드 밸런싱을 수행하는 알고리즘을 제안하고, Kubernetes 환경에서 시뮬레이션을 통해 여러 가지 상황에서 성능을 검증하여 엣지 컴퓨팅에서의 AI 연산을 보다 효율적으로 수행할 수 있는 방법을 제시한다.
본 연구에서는 루프 센서를 통한 교통량 수집방식의 오류를 해결하기 위해 1종(승용차)과 3종(일반 트럭)의 구분이 어려운 부분 및 영상 이미지의 단점을 보완하기 위해 도로변에 열화상 카메라를 설치하여 영상 이미지를 수집하였다. 수집된 영상 이미지를 레이블링 단계를 거쳐 1종(승용차)과 3종(일반 트럭)의 학습데이터를 구성하였다. 정지영상을 대상으로 labeling을 진행하였으며, 총 17,536대의 차량 이미지(640x480 pixel)에 대해 시행하였다. 열화상 영상 기반의 차종 분류를 달성하기 위해 CNN(Convolutional Neural Network)을 이용하였으며, 제한적인 데이터량과 품질에도 불구하고 97.7%의 분류정확도를 나타내었다. 이는 AI 영상인식 기반의 도로 교통량 데이터 수집 가능성을 보여주는 것이라 판단되며, 향후 더욱더 많은 학습데이터를 축적한다면 12종 차종 분류가 가능할 것이다. 또한, AI 기반 영상인식으로 도로 교통량의 12종 차종뿐만 아니라 다양한(친환경 차량, 도로 법규 위반차량, 이륜자동차 등) 차종 분류를 할 수 있을 것이며, 이는 국가정책, 연구, 산업 등의 통계 데이터로 활용도가 높을 것으로 판단된다.
최근, 실시간으로 카메라를 통해 동작을 인식하는 기술의 연구가 많이 진행되고 있다. 기존의 연구들에서는 사람의 관절로부터 특징을 추출하는 개수가 적기 때문에 동작 분류의 정확도가 낮은 한계점들이 있다. 본 논문에서는 이러한 한계점들을 해결하기 위해 움직일 때 변하는 관절의 각도를 특징 추출하여 계산하는 알고리즘과 이미지 분류 시에 정확도가 높은 CBAM(Convolutional Block Attention Module)을 사용한 분류모델을 제안한다. AI Hub에서 제공하는 피트니스 자세 이미지로부터 5가지 운동 동작 이미지를 인용하여 분류 모델에 적용한다. 구글에서 제공하는 그래프 기반 프레임워크인 MediaPipe 기법을 사용하여, 이미지로부터 운동 동작 분류에 중요한 8가지 관절 각도 정보를 추가적으로 추출한다. 추출한 특징들을 모델의 입력으로 설정하여, 분류 모델을 학습시킨다. 시뮬레이션 결과로부터 제안한 모델은 높은 정확도로 운동 동작을 구분하는 것을 확인할 수 있다.
사물인터넷의 발달에 따라 IOT 장비의 보안 중요성도 더욱 가중되고 있다. 특히 사물인터넷의 특성 상 수십, 수백 개에 이르는 IP 카메라, 홈 IOT 장비, 다양한 측정 장비 등의 계정 관리는 시스템 관리자나 사용자들이 필수적으로 수행해야 하는 번거로운 작업이 되었다. 본 논문에서는 사물인터넷 상에 사용될 수 있는 다양한 장비들의 계정 관리를 체계적으로 설계하여 사용자에게 업무 효율을 높일 수 있는 시스템을 제안한다. 계정 관리의 주요 기능을 6 가지 기능으로 나누어 제공하고 기존의 시스템들보다 개선된 기술들을 적용하였다. 제안 시스템은 권위있는 기관의 인증 테스트를 성공적으로 통과하여 현재 실무 현장에 활용되고 있으며 향후 AI 기술을 적용한 스마트 계정 관리 시스템으로 개발 중이다.
The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.
전방 낙하물과 같은 돌발상황이 발생했을 때 신속하고 적절한 정보 제공은 도로 위 이용자들의 편의를 가져다주고 2차 교통사고 또한 효과적으로 줄일 수 있다. 도로 상의 돌발상황은 현재 국내에서 루프 검지기나 CCTV 등 ITS 기반 검지 체계를 사용하여 주로 검지하고 있다. 이러한 방식은 검지기의 검지 구간에서의 도로 위 데이터만을 얻을 수 있다. 때문에, 기존 ITS 기반 검지체계의 공간적 음영구간에서 돌발상황을 찾아내기 위하여 새로운 검지 수단이 필요하다. 이에 본 연구에서는 차량 내 설치된 단말기에서 촬영된 영상으로부터 돌발상황을 검지 및 분류하는 ResNet 기반 알고리즘을 제안한다. 국내 고속도로 전방 주행영상을 수집하였고, 돌발상황 유형을 클래스로 정의하여 각 데이터를 라벨링한 후, 제안한 알고리즘으로 데이터를 학습시켰다. 학습 결과, 개발한 알고리즘은 데이터 수가 상대적으로 적었던 일부 클래스를 제외하고 정의한 돌발상황 클래스에 대하여 높은 검지율을 보였다.
건설 현장의 사고는 중증외상환자가 발생하기 쉬운 특성 탓에 사망으로 이어지는 비율이 매우 높다. 중증외상환자의 사망률을 줄이기 위해서는 빠른 대처가 필요하며, 빠른 사고 대처를 위해 인공지능 기술과 카메라를 이용하여 사고를 감지하는 시스템들이 개발되었다. 그러나 기존 사고 감지 시스템들은 단일 카메라만을 사용하여, 사각지대로 인해 건설 현장의 모든 사고를 감지하기에 한계가 있다. 따라서, 본 논문에서는 다수의 카메라를 사용하여 감지 사각지대를 최소화하는 시스템을 구현하였다. 구현된 시스템은 다수의 카메라의 영상에서 YOLO-pose 라이브러리로 특징점을 추출하고, 추출된 특징점을 장단기 메모리(Long Short Term Memory) 기반 순환신경망에 입력하여 사고를 감지하였다. 실험 결과, 우리는 제안하는 시스템이 복수의 카메라 사용으로 감지 사각지대를 최소화하면서도 높은 정확도를 가지는 것을 확인하였다.
This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.