• Title/Summary/Keyword: AI 모델

Search Result 1,308, Processing Time 0.028 seconds

LUKE based Korean Dense Passage Retriever (LUKE 기반의 한국어 문서 검색 모델 )

  • Dongryul Ko;Changwon Kim;Jaieun Kim;Sanghyun Park
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.131-134
    • /
    • 2022
  • 자연어처리 분야 중 질의응답 태스크는 전통적으로 많은 연구가 이뤄지고 있는 분야이며, 최근 밀집 벡터를 사용한 리트리버(Dense Retriever)가 성공함에 따라 위키피디아와 같은 방대한 정보를 활용하여 답변하는 오픈 도메인 QA(Open-domain Question Answering) 연구가 활발하게 진행되고 있다. 대표적인 검색 모델인 DPR(Dense Passage Retriever)은 바이 인코더(Bi-encoder) 구조의 리트리버로서, BERT 모델 기반의 질의 인코더(Query Encoder) 및 문단 인코더(Passage Encoder)를 통해 임베딩한 벡터 간의 유사도를 비교하여 문서를 검색한다. 하지만, BERT와 같이 엔티티(Entity) 정보에 대해 추가적인 학습을 하지 않은 언어모델을 기반으로 한 리트리버는 엔티티 정보가 중요한 질문에 대한 답변 성능이 저조하다. 본 논문에서는 엔티티 중심의 질문에 대한 답변 성능 향상을 위해, 엔티티를 잘 이해할 수 있는 LUKE 모델 기반의 리트리버를 제안한다. KorQuAD 1.0 데이터셋을 활용하여 한국어 리트리버의 학습 데이터셋을 구축하고, 모델별 리트리버의 검색 성능을 비교하여 제안하는 방법의 성능 향상을 입증한다.

  • PDF

Action Classification Using IMU of Wearable Watch to Detect Critical Situation (위험 상황 감지를 위한 스마트워치 IMU 기반 동작분류)

  • Ha-Eun Oh;Jae-Hyun Yoo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.631-632
    • /
    • 2024
  • 본 연구는 웨어러블 기기를 이용하여 위험 상황을 감지하고 사고 예방에 기여할 방법을 탐색한다. 데이터의 시간 영역과 주파수 영역의 분석을 통해 위험한 상황과 일반적인 상황을 구분하는 성능을 비교한다. 비딥러닝 모델과 딥러닝 모델을 비교 평가하였다. 결과적으로 시간 영역보다 주파수 영역에서 컨볼루션 신경망 모델이 우수한 성능을 나타내었다.

A Study on Deep Learning-Based Detection of AI-Generated News (딥러닝 기반 인공지능 생성 뉴스 탐지)

  • Ye-Hun Chang
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.698-700
    • /
    • 2024
  • 생성형 인공지능의 발전으로 AI기자가 작성한 기사가 점차 증가될 것으로 전망되고 있다. 시간 절약, 경제성 등의 장점에도 불구하고 인공지능이 작성한 뉴스 내 허위정보 등으로 혼란이 사회적 문제로 제기되고, 이를 악용한 가짜뉴스 생성의 우려에 따라 구축모델의 필요성이 제기되고 있다. 이에 따라 실제 기사와 AI 작성 기사를 KoBART, KoELECTRA 모델과 두 모델을 앙상블한 모델에 적용시켰고, 그 결과 KoBART 모델의 Accuracy가 0.9995로 가장 높은 지표를 보였다.

Header Text Generation based on Structural Information of Table (테이블 구조 정보를 활용한 헤더 텍스트 생성)

  • Haemin Jung;Myoseop Sim;Kyungkoo Min;Jooyoung Choi;Minjun Park;Stanley Jungkyu Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.415-418
    • /
    • 2023
  • 테이블 데이터는 일반적으로 헤더와 데이터로 구성되며, 헤더는 데이터의 구조와 내용을 이해하는데 중요한 역할을 한다. 하지만 웹 스크래핑 등을 통해 얻은 데이터와 같이 다양한 상황에서 헤더 정보가 누락될 수 있다. 수동으로 헤더를 생성하는 것은 시간이 많이 걸리고 비효율적이기 때문에, 본 논문에서는 자동으로 헤더를 생성하는 태스크를 정의하고 이를 해결하기 위한 모델을 제안한다. 이 모델은 BART를 기반으로 각 열을 구성하는 텍스트와 열 간의 관계를 분석하여 헤더 텍스트를 생성한다. 이 과정을 통해 테이블 데이터의 구성요소 간의 관계에 대해 이해하고, 테이블 데이터의 헤더를 생성하여 다양한 애플리케이션에서의 활용할 수 있다. 실험을 통해 그 성능을 평가한 결과, 테이블 구조 정보를 종합적으로 활용하는 것이 더 높은 성능을 보임을 확인하였다.

  • PDF

Accelerating Neural Network Inference using SIMD in Resource-Constrained Environments (자원 제약 환경에서 SIMD 를 활용한 신경망 연산 가속)

  • Se-Hyeon Jeong;Gi-won Kang;Yun-Seo Lee;Bon-Wook Gu;Jeong-Min Hwang;Hyunyoung Oh
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.50-51
    • /
    • 2024
  • 본 연구는 자원 제약적 임베디드 시스템에서 신경망 연산의 효율성을 극대화하기 위해 SIMD(Single Instruction Multiple Data) 기술을 활용한 최적화 기법을 제안한다. 기존 연구들이 주로 합성곱 연산에 집중된 것과 달리, 본 연구는 신경망의 전체 연산 구간에 SIMD 최적화를 적용하고, 범용 DNN 프레임워크인 Darknet 을 기반으로 다양한 모델에 적용 가능한 방법론을 적용하였다. Raspberry Pi 3B+를 테스트베드로 활용하여 다양한 CNN 모델에 대한 성능 평가를 수행하였으며, 최대 55.2%의 성능 향상을 달성하였다. 또한, SIMD 레지스터 활용도와 연산 속도 간의 상관관계를 분석하여 최적의 구현 전략을 도출하였다.

Building a human rights corpus for interactive generation models (대화형 생성 모델을 위한 인권 코퍼스 구축)

  • Youngsook Song;angjin Sim;Seonghyun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.571-576
    • /
    • 2023
  • 본 연구에서는 인권의 측면에서 AI 모델이 향상된 답변을 제시할 수 있는 방안을 모색하기 위해서 AI가 인권의 문제를 고민하는 전문가와 자신의 문제를 해결하고자 하는 사용자 사이에서 어느 정도로 도움을 줄 수 있는가를 정량적, 정성적으로 검증했다. 구체적으로는 국가인권위원회의 결정례와 상담사례를 분석한 후 이를 바탕으로 좀 더 나은 답변은 무엇인지에 대해 고찰하기 위해서 인권과 관련된 질의 응답 세트를 만든다. 질의 응답 세트는 인권 코퍼스를 학습한 모델과 그렇지 않은 모델의 생성 결과를 바탕으로 한다. 또한 생성된 질의 응답 세트를 바탕으로 설문을 실시하여 전문적인 내용을 담은 문장에 대한 선호도를 분석한다. 본 논문은 대화형 생성 모델이 인권과 관련된 주제에 대해서도 선호되는 답변을 제시할 수 있는가에 대한 하나의 대안이 될 수 있을 것이다.

  • PDF

Establishment Plan on Personalized Training Model for Fostering AI Integrated Human Resource: Focusing on the Ministry of Employment and Labor's STEP as a Public Education and Training Platform (AI 융합형 인재양성을 위한 학습자 맞춤형 훈련프로그램 모델 수립 방안: 고용노동부의 STEP을 중심으로)

  • Rim, Kyung-Hwa;Shin, Jung-min;Lee, Doo-wan
    • Journal of Practical Engineering Education
    • /
    • v.12 no.2
    • /
    • pp.339-351
    • /
    • 2020
  • In response to changes in Fourth Industrial Revolution in recent years, the field of education has focused on development of the human resources in the areas of artificial intelligence (AI: Artificial Intelligence) and industrial robot. Due to particular interest in these areas, the importance of developing integrated human resources equipped with artificial intelligence technology is emphasized in higher education and vocational competence development. In regards to rapid changing environment, this study created a program "Fostering personalized AI integrated human resource" and established an operational model correspond to latest personalized education trend. The established operational model was conducted twice using Delphi survey with experts in AI and innovative education in order to verify the suitability of program's basic structure, training process, and the sub-components of the operational strategy. The final training model was applied to the online vocational training platform (STEP) and a plan was proposed to establish a personalized training model to foster an AI integrated competent individual.

AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets (자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제)

  • Kana Kim;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.302-313
    • /
    • 2023
  • This paper aims to develop a framework that can fully automate the quality management of training data used in large-scale Artificial Intelligence (AI) models built by the Ministry of Science and ICT (MSIT) in the 'AI Hub Data Dam' project, which has invested more than 1 trillion won since 2017. Autonomous driving technology using AI has achieved excellent performance through many studies, but it requires a large amount of high-quality data to train the model. Moreover, it is still difficult for humans to directly inspect the processed data and prove it is valid, and a model trained with erroneous data can cause fatal problems in real life. This paper presents a dataset reconstruction framework that removes abnormal data from the constructed dataset and introduces strategies to improve the performance of AI models by reconstructing them into a reliable dataset to increase the efficiency of model training. The framework's validity was verified through an experiment on the autonomous driving dataset published through the AI Hub of the National Information Society Agency (NIA). As a result, it was confirmed that it could be rebuilt as a reliable dataset from which abnormal data has been removed.

Noised Guide-based Generative Model for Open-domain Conversation (오픈 도메인 대화를 위한 노이징된 가이드 기반 생성 모델)

  • Bit-Na Keum;Hong-Jin Kim;Sang-Min Park;Jai-Eun Kim;Jin-Xia Huang;Oh-Woog Kwon;Hark-Soo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.82-87
    • /
    • 2022
  • 대화 모델은 대표적으로 검색 모델 또는 생성 모델을 기반으로 구현된다. 최근에는 두 모델의 장점은 융합하고 단점은 보완하기 위해 검색 기법과 생성 기법을 결합하는 연구가 활발히 이루어지고 있다. 그러나 생성 모델이 검색된 응답을 전혀 반영하지 않고 응답을 생성하여 검색 모델을 간과하는 문제 또는 검색된 응답을 그대로 복사해 생성하여 검색 모델에 과의존하는 문제가 발생한다. 본 논문에서는 이러한 문제들을 완화하며 검색 모델과 생성 모델을 모두 조화롭게 활용할 수 있는 대화 모델을 제안한다. 생성 모델이 검색 모델을 간과하는 문제를 완화하기 위해 학습 시 골드 응답을 검색된 응답과 함께 사용한다. 또한, 검색 모델에 과의존하는 문제를 완화하기 위해 검색된 응답들의 내용어 일부를 마스킹하고 순서를 무작위로 섞어 노이징한다. 검색된 응답은 대화 컨텍스트와의 관련성이 높은 것만을 선별하여 생성에 활용한다. 정량 평가 및 정성 평가를 통해 제안한 방법의 성능 향상 효과를 확인하였다.

  • PDF

AI-Based Particle Position Prediction Near Southwestern Area of Jeju Island (AI 기법을 활용한 제주도 남서부 해역의 입자추적 예측 연구)

  • Ha, Seung Yun;Kim, Hee Jun;Kwak, Gyeong Il;Kim, Young-Taeg;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.72-81
    • /
    • 2022
  • Positions of five drifting buoys deployed on August 2020 near southwestern area of Jeju Island and numerically predicted velocities were used to develop five Artificial Intelligence-based models (AI models) for the prediction of particle tracks. Five AI models consisted of three machine learning models (Extra Trees, LightGBM, and Support Vector Machine) and two deep learning models (DNN and RBFN). To evaluate the prediction accuracy for six models, the predicted positions from five AI models and one numerical model were compared with the observed positions from five drifting buoys. Three skills (MAE, RMSE, and NCLS) for the five buoys and their averaged values were calculated. DNN model showed the best prediction accuracy in MAE, RMSE, and NCLS.