• Title/Summary/Keyword: AI 데이터셋

Search Result 235, Processing Time 0.027 seconds

Implementation of AI Exercise Therapy System customized for Kidney Disease (신장 질환 맞춤형 AI 운동요법 제공 시스템 구현)

  • Park, Gijo;Lee, Byunghoon;Kim, Kyungseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.37-42
    • /
    • 2022
  • In this paper, AI methods such as deep learning are applied to provide customized exercise therapy for patients with kidney disease. In order to apply deep learning, a dataset that can determine kidney disease is trained to determine whether it is a kidney disease, and 1RM, which is the user's physical information and muscle strength according to whether it is a disease, can also be calculated through deep learning. The calculated muscle strength of 1RM was converted into resistant exercise for each part through a calculation equation for each part of the body, and was configured to be provided with an aerobic exercise amount tailored to the user's body information. If continuous research is conducted in the manner proposed in this paper, customized exercise therapy can be provided for various diseases.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

Q&A and management AI chatbot service in the context of a university non-face-to-face remote lecture using the Seq2Seq model (Seq2Seq 모델을 활용한 대학교 비대면 원격강의 상황에서 질문 문답 및 관리 인공지능 챗봇 서비스)

  • Na, Dongjun;Ahn, Jaewook;Park, Sejin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.325-327
    • /
    • 2020
  • 최근 비대면 원격강의의 비율이 증가하였지만 비대면 상황에서 원격으로 진행하는 강의로 인해 강의를 수강하는 학생들의 강의를 진행하는 교수와의 질문에 대한 즉각적인 상호작용과 피드백이 부족하고 교수 또한 비대면 상황에서 학생들과의 소통의 어려움으로 인해 질문에 대한 답변을 하는 것에 어려움 있다. 본 논문에서는 이러한 문제를 해결하기 위해 학생들에게 질문에 대한 즉각적인 답변을 해주고 교수에게는 질문-답변을 관리할 수 있는 인공지능 챗봇 웹 서비스를 제안한다. 웹 서비스는 강의를 수강하는 학생과 강의를 진행하는 교수로 나눠져 제공된다. 구현을 위해 Seq2Seq 모델을 활용하였고 질문-답변 데이터셋으로 학습을 하여 테스트 하였다.

  • PDF

Implementation of Korean Honorific Converter Using OpenNMT (OpenNMT를 활용한 한글 존댓말 변환기의 구현)

  • Jeong, Jun-Nyeong;Kim, Sang-Yeong;Kim, Seong-Tae;Lee, Jeong-Jae;Jung, Yuchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.141-142
    • /
    • 2021
  • 최근 발전한 인공신경망 기반 기계 번역은 번역 시 더 자연스러운 번역을 제공한다. 본 논문에서는 기계번역기법을 이용하여 반말 표현을 존댓말 표현으로 변환하는 기법을 제안한다. 특히, 이를 위해 DCInside의 게시판을 크롤링하고 AI-HUB 데이터와 합쳐 약 20,000개의 자체 데이터 셋을 구축하였으며, 한글 전처리를 위한 4가지 기법 및 OpenNMT 프레임웍의 LSTM 및 Transformer 모듈을 활용하여 실험을 진행하였다. 이를 통해, 반말 표현을 높임 표현으로 변환하는 최적조합을 확인하였으며, 검증시 BLUE점수로 최대 66.53를 획득하였다.

  • PDF

Protocol Classification Based on Traffic Flow and Deep Learning (트래픽 플로우 및 딥러닝 기반의 프로토콜 분류 방법론)

  • Ye-Jin Park;Yeong-Pil Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.836-838
    • /
    • 2024
  • 본 논문은 현대 사회에서 급증하는 VPN의 악용 가능성을 인지하고 VPN과 Non-VPN 트래픽 구별의 중요도를 강조한다. 전통적인 포트 기반 분류와 패킷 분석 접근법의 한계를 넘어서기 위해 트래픽 플로우 특징과 인공지능(AI) 기술을 결합하여 VPN과 Non-VPN 프로토콜을 구별하는 새로운 방법을 제안한다. 직접 수집한 패킷 데이터셋을 사용하여 트래픽 플로우 특징을 추출하고, 패킷의 페이로드와 결합해 이미지를 생성한다. 이를 CNN 모델에 적용함으로써 높은 정확도로 프로토콜을 구별한다. 실험 결과, 제안된 방법은 99.71%의 높은 정확도를 달성하여 트래픽 분류 및 네트워크 보안 강화에 기여할 수 있는 방법론임을 입증한다.

Development and Evaluation of Automatic Pothole Detection Using Fully Convolutional Neural Networks (완전 합성곱 신경망을 활용한 자동 포트홀 탐지 기술의 개발 및 평가)

  • Chun, Chanjun;Shim, Seungbo;Kang, Sungmo;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.55-64
    • /
    • 2018
  • In this paper, we propose fully convolutional neural networks based automatic detection of a pothole that directly causes driver's safety accidents and the vehicle damage. First, the training DB is collected through the camera installed in the vehicle while driving on the road, and the model is trained in the form of a semantic segmentation using the fully convolutional neural networks. In order to generate robust performance in a dark environment, we augmented the training DB according to brightness, and finally generated a total of 30,000 training images. In addition, a total of 450 evaluation DB was created to verify the performance of the proposed automatic pothole detection, and a total of four experts evaluated each image. As a result, the proposed pothole detection showed robust performance for missing.

Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교)

  • Kim, Sanghong;Lee, Bowon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.454-460
    • /
    • 2020
  • Artificial intelligence assistants that provide speech recognition operate through cloud-based voice recognition with high accuracy. In cloud-based speech recognition, Wake-Up-Word (WUW) detection plays an important role in activating devices on standby. In this paper, we compare the performance of Convolutional Neural Network (CNN)-based WUW detection models for mobile devices by using Google's speech commands dataset, using the spectrogram and mel-frequency cepstral coefficient features as inputs. The CNN models used in this paper are multi-layer perceptron, general convolutional neural network, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet. We also propose network that reduces the model size to 1/25 while maintaining the performance of MobileNet is also proposed.

Crack Detection on the Road in Aerial Image using Mask R-CNN (Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출)

  • Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Conventional crack detection methods have a problem of consuming a lot of labor, time and cost. To solve these problems, an automatic detection system is needed to detect cracks in images obtained by using vehicles or UAVs(unmanned aerial vehicles). In this paper, we have studied road crack detection with unmanned aerial photographs. Aerial images are generated through preprocessing and labeling to generate morphological information data sets of cracks. The generated data set was applied to the mask R-CNN model to obtain a new model in which various crack information was learned. Experimental results show that the cracks in the proposed aerial image were detected with an accuracy of 73.5% and some of them were predicted in a certain type of crack region.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.