• 제목/요약/키워드: AI 기법

검색결과 592건 처리시간 0.027초

UWB 기반 실내 내비게이션 앱 개발 (Development of UWB-based Indoor Navigation App)

  • 유현우;이정균;남소미;이주연;이윤서;김민성;이영찬;민홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.147-148
    • /
    • 2023
  • 실내 내비게이션 기술은 시설물 구조에 익숙하지 않은 방문자의 길 안내뿐만 아니라 무인 이동체들의 위치를 파악하는 데 중요한 역할을 한다. 본 논문에서는 UWB 기술을 활용하여 타깃 영역 안에서의 좌표를 추출하고 이를 활용하여 길 안내를 해주는 앱을 개발하였다. 개발된 앱은 보정 기법을 통해 사용자의 실제 위치와 지도 위에 표시되는 위치 사이의 오차를 최소화하였다.

인공지능과 핀테크 보안

  • 최대선
    • 정보보호학회지
    • /
    • 제26권2호
    • /
    • pp.35-38
    • /
    • 2016
  • 본 논문에서는 핀테크 보안에 활용 가능한 딥러닝 기술을 살펴본다. 먼저 인공지능과 관련된 보안 이슈를 인공지능이 사람을 위협하는 상황에 대한 보안(Security FROM AI), 인공지능 시스템이나 서비스를 악의적인 공격으로부터 보호하는 이슈(Security OF AI), 인공지능 기술을 활용해 보안 문제를 해결하는 것(Security BY AI) 3가지로 구분하여 살펴본다. Security BY AI의 일환으로 딥러닝에 기반한 비정상탐지(anomaly detection)과 회귀분석(regression)기법을 설명하고, 이상거래탐지, 바이오인증, 피싱, 파밍 탐지, 본인확인, 명의도용탐지, 거래 상대방 신뢰도 분석 등 핀테크 보안 문제에 활용할 수 있는 방안을 살펴본다.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.27-36
    • /
    • 2022
  • 본 논문에서는 이러한 어류 가공 현장의 문제점을 개선하기 위해서 AI 머신 비전을 이용한 어류의 목표 중량 절단 예측기법을 제안한다. 제안하는 방법은 먼저 입력된 물고기의 평면도와 정면도를 촬영하여 이미지기반의 전처리를 수행한다. 그런 다음 RANSAC(RANdom SAMmple Consensus)를 사용하여 어류의 윤곽선을 추출한 다음 3D 모델링을 사용하여 물고기의 3D 외부 정보를 추출한다. 이어서 추출된 3차원 특징 정보와 측정된 중량 정보를 머신러닝하여 목표 중량에 대한 절단 지점을 예측하기 위한 신경망 모델을 생성한다. 마지막으로 제안기법을 통해 예측된 절단 지점으로 직접 절단한 뒤 그 중량을 측정하였다. 그리고 측정된 무게를 목표 무게와 비교하여 MAE(Mean Absolute Error) 와 MRE(Mean Relative Error)와 같은 평가 방법을 사용해 성능을 평가하였다. 그 결과, 목표 중량과 비교해 3% 이내의 평균 오차율을 달성하였다. 제안된 기법은 향후 자동화 시스템과 연계되어 수산업 발전에 크게 기여할 것으로 전망한다.

지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법 (Blockchain and AI-based big data processing techniques for sustainable agricultural environments)

  • 정윤수
    • 산업과 과학
    • /
    • 제3권2호
    • /
    • pp.17-22
    • /
    • 2024
  • 최근 ICT분야가 다양한 환경에서 사용되면서 지속가능한 농업 환경에서는 ICT 기술들을 활용하여 농작물별 병충해 분석, 농작물 수확시 로봇 사용, 빅 데이터로 인한 예측 등이 가능해졌다. 그러나, 지속 가능한 농업 환경에서는 자원의 고갈, 농업 인구 감소, 빈곤 증가, 환경 파괴 등을 해결하기 위한 노력이 꾸준히 요구되고 있다. 본 연구에서는 지속 가능한 농업 환경 기반의 농작물의 생산 비용 감소 및 효율성을 증가하기 위한 인공지능 기반 빅 데이터 처리 기법을 제안한다. 제안 기법은 AI를 결합한 농작물의 빅 데이터를 처리함으로써 데이터의 보안성과 신뢰성을 강화하고, 더 나은 의사 결정과 비즈니스 가치 추출이 가능하다. 이는 다양한 산업과 분야에서 혁신적인 변화를 이끌어내고, 데이터 중심의 비즈니스 모델의 발전을 촉진할 수 있다. 실험과정에서 제안 기법은 다량의 데이터가 생성되나, 일일이 정답을 태깅하기 힘든 농장 현장에서, 소량의 데이터에 대해서만 정확한 정답을 부여하고, 정답이 부여되지 않은 다량의 데이터와 함께 학습하여, 다량의 정답 데이터로 학습했을 때와 유사한 성능(오차율:0.05 이내)이 나타났다.

Reference 기반 AI 모델의 효과적인 해석에 관한 연구 (A Study on Effective Interpretation of AI Model based on Reference)

  • 이현우;한태현;박영지;이태진
    • 정보보호학회논문지
    • /
    • 제33권3호
    • /
    • pp.411-425
    • /
    • 2023
  • 오늘날 AI(Artificial Intelligence) 기술은 다양한 분야에서 활용 목적에 맞게 분류, 회기 작업을 수행하며 광범위하게 활용되고 있으며, 연구 또한 활발하게 진행 중인 분야이다. 특히 보안 분야에서는 예기치 않는 위협을 탐지해야 하며, 모델 훈련과정에 알려진 위협 정보를 추가하지 않아도 위협을 탐지할 수 있는 비 지도학습 기반의 이상 탐지 기법이 유망한 방법이다. 하지만 AI 판단에 대한 해석 가능성을 제공하는 선행 연구 대부분은 지도학습을 대상으로 설계되었기에 학습 방법이 근본적으로 다른 비 지도학습 모델에 적용하기는 어려우며, Vision 중심의 AI 매커니즘 해석연구들은 이미지로 표현되지 않는 보안 분야에 적용하기에 적합하지 않다. 따라서 본 논문에서는 침해공격의 원본인 최적화 Reference를 탐색하고 이와 비교함으로써 탐지된 이상에 대한 해석 가능성을 제공하는 기법을 활용한다. 본 논문에서는 산출된 Reference를 기반으로 실존 데이터에서 가장 가까운 데이터를 탐색하는 로직을 추가 제안함으로써 실존 데이터를 기반으로 이상 징후에 대한 더욱 직관적인 해석을 제공하고 보안 분야에서의 효과적인 이상 탐지모델 활용을 도모하고자 한다.

거대 언어 모델을 활용한 한국어 제로샷 관계 추출 비교 연구 (A Comparative Study on Korean Zero-shot Relation Extraction using a Large Language Model)

  • 김진성;김경민;박기남;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.648-653
    • /
    • 2023
  • 관계 추출 태스크는 주어진 텍스트로부터 두 개체 간의 적절한 관계를 추론하는 작업이며, 지식 베이스 구축 및 질의응답과 같은 응용 태스크의 기반이 된다. 최근 자연어처리 분야 전반에서 생성형 거대 언어모델의 내재 지식을 활용하여 뛰어난 성능을 성취하면서, 대표적인 정보 추출 태스크인 관계 추출에서 역시 이를 적극적으로 활용 가능한 방안에 대한 탐구가 필요하다. 특히, 실 세계의 추론 환경과의 유사성에서 기인하는 저자원 특히, 제로샷 환경에서의 관계 추출 연구의 중요성에 기반하여, 효과적인 프롬프팅 기법의 적용이 유의미함을 많은 기존 연구에서 증명해왔다. 따라서, 본 연구는 한국어 관계 추출 분야에서 거대 언어모델에 다각적인 프롬프팅 기법을 활용하여 제로샷 환경에서의 추론에 관한 비교 연구를 진행함으로써, 추후 한국어 관계 추출을 위한 최적의 거대 언어모델 프롬프팅 기법 심화 연구의 기반을 제공하고자 한다. 특히, 상식 추론 등의 도전적인 타 태스크에서 큰 성능 개선을 보인 사고의 연쇄(Chain-of-Thought) 및 자가 개선(Self-Refine)을 포함한 세 가지 프롬프팅 기법을 한국어 관계 추출에 도입하여 양적/질적으로 비교 분석을 제공한다. 실험 결과에 따르면, 사고의 연쇄 및 자가 개선 기법 보다 일반적인 태스크 지시 등이 포함된 프롬프팅이 정량적으로 가장 좋은 제로샷 성능을 보인다. 그러나, 이는 두 방법의 한계를 지적하는 것이 아닌, 한국어 관계 추출 태스크에의 최적화의 필요성을 암시한다고 해석 가능하며, 추후 이러한 방법론들을 발전시키는 여러 실험적 연구에 의해 개선될 것으로 판단된다.

  • PDF

생성형 AI에 관한 인식 및 집단간 차이 분석 (Analysis of Perceptions and Differences between Groups regarding Generative AI)

  • 노규성
    • 디지털융복합연구
    • /
    • 제22권1호
    • /
    • pp.15-21
    • /
    • 2024
  • 본 연구는 생성형 AI의 활용 및 사용자 그룹 간 차이에 대한 인식을 분석하고자 하는 목적으로 가지고 있다. 본 연구는 생성형 AI 사용자 그룹 간 차이에 대한 인식을 조사하여 각 사용자층에 대한 AI 활용 역량 증진을 위한 시사점을 도출하였다. 검증 결과, 연령별 집단 간에는 유의적인 차이가 없으며, 전문적 배경에 의한 집단 간에는 생성형 AI 활용 분야와 생성형 AI의 윤리적 관점에서 유의미한 차이를 보였다. 이로 인해 본 연구는 전문 분야에 따라 다른 AI 솔루션 제공 및 맞춤형 교육 훈련 필요성, 윤리적 고려에 대한 특별한 교육과 문화 형성 등에 대한 대안을 제시하였다. 또한 텍스트 마이닝 기법을 통해 연령대별, 전문 분야별로 다른 방식의 AI 활용 및 활용 역량 개발 교육 등을 제안하였다는 점에서 학술적 기여를 했다고 사료된다.

텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석 (Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies)

  • 윤지은;서창진
    • 한국IT서비스학회지
    • /
    • 제18권2호
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

강건한 질의응답 모델을 위한 데이터셋 증강 기법 (Adversarial Examples for Robust Reading Comprehension)

  • 장한솔;전창욱;최주영;심묘섭;김현;민경구
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.41-46
    • /
    • 2021
  • 기계 독해는 문단과 질문이 주어질 때에 정답을 맞추는 자연어처리의 연구분야다. 최근 기계 독해 모델이 사람보다 높은 성능을 보여주고 있지만, 문단과 질의가 크게 변하지 않더라도 예상과 다른 결과를 만들어 성능에 영향을 주기도 한다. 본 논문에서는 문단과 질문 두 가지 관점에서 적대적 예시 데이터를 사용하여 보다 강건한 질의응답 모델을 훈련하는 방식을 제안한다. 트랜스포머 인코더 모델을 활용하였으며, 데이터를 생성하기 위해서 KorQuAD 1.0 데이터셋에 적대적 예시를 추가하여 실험을 진행하였다. 적대적 예시를 이용한 데이터로 실험한 결과, 기존 모델보다 1% 가량 높은 성능을 보였다. 또한 질의의 적대적 예시 데이터를 활용하였을 때, 기존 KorQuAD 1.0 데이터에 대한 성능 향상을 확인하였다.

  • PDF