• 제목/요약/키워드: AI (artificial intelligence)

검색결과 1,998건 처리시간 0.033초

IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로 (A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation)

  • 강려은;양성병
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.169-196
    • /
    • 2017
  • 제4차 산업혁명의 도래로 IT(information technology)를 활용한 다양한 융합기술에 대한 관심이 높아지고 있으며, 이에 따른 고품질의 IT관련 교육서비스 제공의 필요성 및 중요성 또한 점차 증대되고 있다. 한편, 일반적인 교육서비스 품질 및 만족도에 관한 연구는 그 동안 다양한 맥락에서 활발히 진행된 바 있으나, IT교육 참가자를 대상으로 한 IT교육 서비스품질의 역할을 살펴본 연구는 상대적으로 부족한 것으로 파악된다. 이에 본 연구에서는 SERVPERF 모형 및 관련 선행연구를 바탕으로 IT교육 맥락에서 IT교육 서비스품질의 다섯 가지 차원(유형성, 신뢰성, 반응성, 확신성 및 공감성)을 도출하고, 이러한 세부 IT교육 서비스품질 요인이 학습자의 교육만족도, 나아가 현업적용의도 및 추천의도에 미치는 영향을 검증하였다. 또한, 이러한 영향이 학습자 직위(실무자 집단/관리자 집단) 및 참여동기(자발적 참여집단/비자발적 참여집단)에 따라 어떻게 달라지는지에 대한 추가분석도 실시하였다. 서울 소재 'M'교육기관 203명의 IT교육 참가자 대상 설문을 활용한 구조방정식모형 분석 결과, IT교육 서비스품질의 다섯 가지 차원 가운데 유형성, 신뢰성 및 확신성이 교육만족도에 유의한 영향을 주는 것으로 나타났으며, 이러한 교육만족도는 현업적용의도와 추천의도에도 유의한 영향을 주는 것으로 조사되었다. 또한, IT교육 서비스품질이 교육만족도에 미치는 영향 관계에서 학습자 직위 및 참여동기가 유의한 조절효과를 가진다는 사실을 확인하였다. 본 연구는 SERVPERF 모형을 활용하여 IT교육 맥락에서 IT교육 서비스품질의 영향력을 실증한 최초의 연구라는 점에서 학술적 의의가 있다. 본 연구결과가 IT교육 서비스 제공기관의 교육만족도 제고 및 효율적인 서비스 운영을 위한 실질적인 지침을 제공해 줄 수 있을 것으로 기대한다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.

제4차 산업혁명 시대의 항공 테러리즘 양상 및 국내 항공테러 대응체계 발전방향 (The Trend of Aviation Terrorism in the 4th Industrial Revolution Period and the Development Direction for Domestic Counter Terrorism of Aviation)

  • 황호원;김승우
    • 항공우주정책ㆍ법학회지
    • /
    • 제32권2호
    • /
    • pp.155-188
    • /
    • 2017
  • 제4차 산업혁명은 한편으로는 인류에게 새로운 문명 패러다임을 구축할 수 있는 긍정적인 기회를 제공해 주고 있다. 그러나 다른 한편으로는 제4차 산업혁명으로 인해 '구글 알파고(Google Alpha Go)'와 같은 인공지능(AI)이 혁명적으로 진보하면서 인간의 고유한 능력마저도 '실리콘칩(silicon chip)'으로 대체되고, 물리적 공간에서 사람의 온기를 느끼면서 의사소통할 수 있는 기회가 축소됨에 따라 인간의 존재감이 약화되었으며, 사이코패스(psychopath)와 같이 인간을 게임하듯이 사냥하는 강력범죄가 증가하는 등 사회적 병리현상이 더욱 심화될 수 있다는 우려감도 확산되고 있다. 더구나 최근의 국제 테러리즘은 무고한 사람들을 무차별적으로 공격하는 '반사회적 강력범죄'와 유사한 형태로 전개되고 있고, 이에 따라 테러단체가 제4차 산업혁명이 제공하는 문명의 이기를 테러의 수단으로 악용하고, 제4차 산업혁명으로 인해 나타나는 사회적 병리현상을 전략적으로 이용할 개연성은 갈수록 증대되고 있다. 따라서 향후 항공 테러리즘의 패러다임 또한 항공기보다는 공항시설 및 이용객들을 공격하는 방식으로 변화될 것으로 전망된다. 왜냐하면 공항시설은 갈수록 지능화 무인화되고, 많은 사람들이 밀집해 있는 '다중이용시설'이며, 사이코 패스적(psychopathic) 테러리스트들이 쉽게 접근할 수 있기 때문이다. 이러한 관점에서 볼 때 우리의 항공테러 대응체계는 (1) 테러방지법상 대테러센터의 한계 (2) 항공테러와 일반테러의 초동조치 관할권 충돌 개연성 상존 (3) 효율적인 현장 지휘통제 제한 (4) 항공보안과 대테러 사무의 협의기구 이원화 (5) 정부부처별 대테러 정보수집 기능 분산 (6) 공항 일반구역(Land side)의 보안체계 취약 (7) 공항운영 시스템상의 사이버 보안태세 미흡 (8) 항공 테러리즘에 대한 국제협력 네트워크 구축 미흡 등 여러 가지 측면에서 취약한 부분이 많이 있다. 따라서 국내 '항공테러' 대응체계를 제4차 산업혁명 시대의 국제 테러리즘에 선제적으로 대응할 수 있도록 개선할 필요가 있다. 본 연구에서는 이를 위한 대안으로 (1) 항공특별사법경찰대 창설(조직편성 측면) (2) 공항 일반구역(Land side)의 보안태세 강화 및 현장 지휘체계의 실효성 보장을 위한 항공보안법 및 테러방지법 정비(법령정비 측면) (3) 사이버 공간에서의 '테러 대응' 역량 강화(보안태세 측면) (4) 항공 테러리즘에 대한 국제협력 네트워크 구축(국제협력 측면) 등을 제시하였다.

  • PDF

대학 내 조경전공 교육과정에 있어 새로운 컴퓨터 미디어 수업의 필요와 개선방향 (The Need and Improvement Direction of New Computer Media Classes in Landscape Architectural Education in University)

  • 나성진
    • 한국조경학회지
    • /
    • 제49권1호
    • /
    • pp.54-69
    • /
    • 2021
  • 2020년 문명사회의 전반적 생활 방식은 종이와 같은 소모성 아날로그 미디어에서 데이터 공유에 기반한 디지털 미디어로, 유선에 기반한 미디어에서 무선의 언택트 미디어로 뚜렷한 변화를 보인다. 본 연구는 이러한 사회 변화 양상을 바탕으로 조경학과 교육과정에서 컴퓨터 미디어의 교육과 활용이 시대의 변화에 적합하게 운용되고 있는지를 고찰하고, 4차 산업혁명 시대의 조경 교육을 위한 새로운 컴퓨터 수업의 방향을 제시하고자 한다. 조경은 도시를 연구 및 설계 대상으로 하는 분야로 사회 변화와 긴밀하게 연결되어 있다. 하지만 실리콘밸리를 기반으로 IT 혁명이 시작되고, 인공지능, 빅데이터, 자율주행차, 클라우드 네트워크, 사물인터넷 등 4차 산업혁명의 디지털 인프라가 현대 사회를 기술적으로, 사회적으로, 경제적으로 변화시키고 있는 데에 반해, 조경 교육이 그러한 변화를 적극적으로 수용하며 가시적인 차이를 만들고 있다고 보기에는 분명한 근거가 부족하다. 따라서 본 연구는 조경 교육에서 컴퓨터 테크놀로지와 뉴 미디어의 활용 현황을 돌아보고, 새로운 시대에 적합한 교육과정의 대안적 방향에 대해 논의했다. 우선 현대 조경 및 건축 전반의 컴퓨테이셔널 디자인의 동향에 대해 살펴 논의의 근거를 마련했다. 그리고 이를 바탕으로 국내외 조경학과 교육과정에서 컴퓨터 미디어 수업의 변화 양상과 현황을 선행 연구와 교과과정을 바탕으로 분석했다. 그 결과, 국외 조경학과의 경우 1994년의 연구와 2020년의 현황 사이에 컴퓨터 관련 과목의 수가 눈에 띄게 증가하고, 그 종류가 다양해진 반면, 국내 조경학과의 경우 일부 교과목이 변경된 것 외에 별다른 변화를 확인할 수 없었다. 이는 국내 조경 교육과정이 디지털 시대의 변화에 소극적으로 대처하고 있음을 시사한다. 마지막으로 이러한 논의를 바탕으로 4차 산업혁명 시대의 조경학과가 컴퓨터 미디어와 관련해 지향해야 할 새로운 교육과정에 대한 여러 실천적 대안을 검토했다.

ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래 (Current status and future of insect smart factory farm using ICT technology)

  • 석영식
    • 식품과학과 산업
    • /
    • 제55권2호
    • /
    • pp.188-202
    • /
    • 2022
  • 최근 곤충산업은 애완곤충, 천적 등 산업에서 사료, 식용, 약용곤충으로 그 활용범위가 확대되면서 곤충 원료의 품질관리에 대한 요구가 커지고 곤충 제품의 안전성 확보에 관심이 높아지고 있다. 전세계 곤충산업 시장은 많은 소규모 농가형 기업과 소수의 대기업으로 구성되어 있으며 전통적인 수작업 사육에서 고도로 자동화되고 기술적으로 진보된 플랜트형 사육 등 다양한 기술 수준의 사육형태가 존재한다. 산업규모가 확대되는 과정에서 사육환경의 설계는 온습도, 공기질 조절과 병원체 및 기타 오염 물질의 전파를 방지하는 것은 중요한 성공 요인이 되며 사육에서 부화, 사육, 가공에 이르기까지 생산의 안전성을 유지하기 위해서 통일된 운영시스템 아래 통제된 환경이 필요하다. 따라서 곤충의 생육과 사육환경의 빅데이터화 된 데이터베이스를 기반으로 외부 환경 변화에도 안정적인 사육환경 유지가 가능하고 곤충성장에 맞추어 사육환경을 제어하며 노동력 감소와 생산성 향상을 이루기 위한 ICT 기반 곤충 스마트팩토리팜의 설계 및 운용알고리즘을 개발하는 것은 곤충산업 발전의 필수 선결조건이 되고 있다. 특히 유럽 상업용 곤충사육시설은 상당한 투자자의 관심을 받아 곤충 회사가 대규모 생산시설로 건설하고 있는데 이는 EU가 2017년 7월 물고기양식 사료원료로 곤충 단백질의 사용을 승인한 후 가능해졌으며 이를 기반으로 곤충산업의 식용, 의료 등 다른 분야도 첨단기술을 접목하는 현상이 가속화되었다. 외국 곤충산업은 주로 전세계 식품 생산량의 30%에 이르는 소비 전 폐기물이라고 불리는 식품회사의 생산과잉 원료 등을 업사이클링을 통해 재활용생태계를 형성하는데 반해 우리나라는 가정 및 가게에서 발생하는 음식물폐기물 또는 농산물 가공부산물을 주로 이용한다는 점에서 사료 수집과 영양성분 유지, 위생 등 지속가능한 산업생태계를 이루는 데 어려움을 겪고 있다. 또한, 각 곤충 종은 고유하고 특정 사육기술을 요구하고 있다는 점을 감안할 때 곤충사육자는 각기 다른 종별 접근 방식을 채택해야 하는데 대부분의 곤충기업은 여전히 소규모로 운영되며 특히 농가형 기업의 경우 지식과 경험이 도제식으로 전승되는 경우가 많아 표준화되고 규격화된 사육기술이 유지되기 어려운 반면, 일부 곤충 기업은 대규모 사육시설에 스마트 통합 제어시스템을 도입하여 먹이주기, 물주기, 취급, 수확, 청소 시스템, 가공, 품질관리, 포장 및 보관과 같은 곤충 생산과 관련된 요소가 최적화된 사육 환경과 사육프로세스로 표준화되어가는 모습을 보이고 있으며 심지어 일부 유럽기업은 AI기술로 구동되는 완전 자율 모듈식 곤충시스템으로 사육 유지관리를 하고 있는 사례도 등장하기 시작하였다. 향후 전세계 곤충산업은 공급업체로부터 알이나 작은 유충을 구입하고 곤충을 성숙시키기까지 애벌레의 비육 즉 생산원료에 중점을 두는 시스템과 알을 낳고 수확하고 유충의 초기 전처리에 이르기까지 전체 생산 과정을 다루는 시스템, 곤충 유충 생산의 모든 단계와 제분, 지방 제거 및 단백질 또는 지방 분획 등 추가 가공 단계를 다루는 대규모 생산시스템 등으로 점점 세분화할 것으로 본다. 우리나라에서도 인공지능 및 ICT 첨단기술을 활용한 곤충스마트팩토리팜 연구 및 개발 등이 가속화되고 있어 곤충이 기존 사료, 식품 뿐만 아니라 천연 플라스틱 또는 천연성형소재 등 2차산업의 탄소제로 소재로 활용할 수 있도록 특정 종 육종과정 단축이나 기능성 강화를 위한 사육제어가 가능하도록 곧 곤충 스마트팩토리팜 한국형 맞춤사육시스템이 등장할 수 있을 것으로 보이며, 특히 곤충 제품의 지속 가능성을 높이기 위해 사료 및 자원 사용에 대한 통합 소프트웨어 접근 방식을 개발하는 것에 중점을 두고 진행되고 있다.

AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구 (A Study of Life Safety Index Model based on AHP and Utilization of Service)

  • 오혜수;이동훈;정종운;장재민;양상운
    • 한국재난정보학회 논문집
    • /
    • 제17권4호
    • /
    • pp.864-881
    • /
    • 2021
  • 연구목적: 본 연구는 빅데이터와 인공지능 기술을 기반으로 다양한 위험 특성과 개개인의 상황을 고려한 맞춤형 예방 솔루션을 제공하는 생활안전 예방서비스 연구개발의 일환으로, 일상 생활안전과 관련하여 개인의 현재 안전수준을 정량적 수치로 나타내는 생활안전지수를 산출하는 방안을 제시하여, 안전사고를 예방하고 대응하기 위한 맞춤형 종합지수 서비스를 제공하는 데 목적이 있다. 연구방법: 본 연구의 핵심이 되는 모델은 AHP(Analysis Hierarchy Process)와 리커트 척도(Likert Scale)를 혼용하는 방법으로, 전문가 그룹의 합의형성 모델을 기반으로 산출된다. 생활안전 예방서비스를 평가할 수 있는 평가항목을 위험지표, 취약지표, 예방지표 등으로 구분하고, 이를 AHP 의사결정 방법론에 따라 AHP 계층구조로 정의하여 각 레벨 항목의 쌍대비교를 통해 평가항목 간 상대적 가중치를 산출하는 방법을 제안한다. 또한 평가항목을 적용한 개별 예방서비스에 대한 평가는 향후 생활안전 예방서비스의 확대를 고려하여 AHP 쌍대비교를 대신하여 리커트 척도 기반으로 절대평가하고 그 결과를 상대비교하는 방법으로 개별서비스 간 가중치를 산출하는 방안도 함께 제시한다. 연구결과: 생활안전 예방서비스에 대한 서비스 가중치를 도출하고, 이를 생활안전 예방서비스의 인공지능 예측모델을 통해 산출된 개별위험지수에 반영하여 종합지수를 산출하였다. 결론: 구현한 모델의 적용을 위하여 생활안전 예방서비스 앱과 플랫폼으로 구성된 테스트 환경을 구축하고, 사용자 시나리오를 바탕으로 기능에 대한 효능을 평가하였다. 이를 통해 본 연구에서 제시된 생활안전지수는 사용자에게 현재 자신의 안전수준을 종합하여 나타냄으로써 안전 위험에 진단과 대응 및 예방 골든타임을 지원하는 것으로 기대된다.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.