• Title/Summary/Keyword: AI (Artificial Intelligence) based drug discovery

Search Result 5, Processing Time 0.019 seconds

A Study on the Intention to use the Artificial Intelligence-based Drug Discovery and Development System using TOE Framework and Value-based Adoption Model (TOE 프레임워크와 가치기반수용모형 기반의 인공지능 신약개발 시스템 활용의도에 관한 실증 연구)

  • Kim, Yeongdae;Lee, Won Suk;Jang, Sang-hyun;Shin, Yongtae
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.41-56
    • /
    • 2021
  • New drug discovery and development research enable clinical treatment that saves human life and improves the quality of life, but the possibility of success with new drugs is significantly low despite a long time of 14 to 16 years and a large investment of 2 to 3 trillion won in traditional methods. As artificial intelligence is expected to radically change the new drug development paradigm, artificial intelligence new drug discovery and development projects are underway in various forms of collaboration, such as joint research between global pharmaceutical companies and IT companies, and government-private consortiums. This study uses the TOE framework and the Value-based Adoption Model, and the technical, organizational, and environmental factors that should be considered for the acceptance of AI technology at the level of the new drug research organization are the value of artificial intelligence technology. By analyzing the explanatory power of the relationship between perception and intention to use, it is intended to derive practical implications. Therefore, in this work, we present a research model in which technical, organizational, and environmental factors affecting the introduction of artificial intelligence technologies are mediated by strategic value recognition that takes into account all factors of benefit and sacrifice. Empirical analysis shows that usefulness, technicality, and innovativeness have significantly affected the perceived value of AI drug development systems, and that social influence and technology support infrastructure have significant impact on AI Drug Discovery and Development systems.

Present Status and Future of AI-based Drug Discovery (신약개발에서의 AI 기술 활용 현황과 미래)

  • Jung, Myunghee;Kwon, Wonhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1797-1808
    • /
    • 2021
  • Artificial intelligence is considered one of the core technologies leading the 4th industrial revolution. It is adopted in various fields bringing about a huge paradigm shift throughout our society. The field of biotechnology is no exception. It is undergoing innovative development by converging with other disciplines such as computers, electricity, electronics, and so on. In drug discovery and development, big data-based AI technology has a great potential of improving the efficiency and quality of drug development, rapidly advancing to overcome the limitations in the existing drug development process. AI technology is to be specialized and developed for the purpose including clinical efficacy and safety-related end points based on the multidisciplinary knowledge such as biology, chemistry, toxicology, pharmacokinetics, etc. In this paper, we review the current status of AI technology applied for drug discovery and consider its limitations and future direction.

Trends in Artificial Intelligence Applications in Clinical Trials: An analysis of ClinicalTrials.gov (임상시험에서 인공지능의 활용에 대한 분석 및 고찰: ClinicalTrials.gov 분석)

  • Jeong Min Go;Ji Yeon Lee;Yun-Kyoung Song;Jae Hyun Kim
    • Korean Journal of Clinical Pharmacy
    • /
    • v.34 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • Background: Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clinical trials registered on ClinicalTrials.gov to elucidate current usage of these technologies. Methods: As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions-Drug, Biological, Dietary Supplement, or Combination Product-were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection. Results: The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imaging or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to develop rapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.

A Study on The Effect of Perceived Value and Innovation Resistance Factors on Adoption Intention of Artificial Intelligence Platform: Focused on Drug Discovery Fields (인공지능(AI) 플랫폼의 지각된 가치 및 혁신저항 요인이 수용의도에 미치는 영향: 신약 연구 분야를 중심으로)

  • Kim, Yeongdae;Kim, Ji-Young;Jeong, Wonkyung;Shin, Yongtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.12
    • /
    • pp.329-342
    • /
    • 2021
  • The pharmaceutical industry is experiencing a productivity crisis with a low probability of success despite a long period of time and enormous cost. As a strategy to solve the productivity crisis, the use cases of Artificial Intelligence(AI) and Bigdata are increasing worldwide and tangible results are coming out. However, domestic pharmaceutical companies are taking a wait-and-see attitude to adopt AI platform for drug research. This study proposed a research model that combines the Value-based Adoption Model and the Innovation Resistance Model to empirically study the effect of value perception and resistance factors on adopting AI Platform. As a result of empirical verification, usefulness, knowledge richness, complexity, and algorithmic opacity were found to have a significant effect on perceived values. And, usefulness, knowledge richness, algorithmic opacity, trialability, technology support infrastructure were found to have a significant effect on the innovation resistance.

Digital Transformation Shift in Global Pharmaceutical Industry Going through the Covid-19 Pandemic Era

  • Il Seo;Hak Kyun Yang;Min Joon Seo;Sung Hyun Kim;Jin Tae Hong
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.1
    • /
    • pp.054-074
    • /
    • 2023
  • With the advent of the '4th Industrial Revolution', digitalization using AI (Artificial Intelligence), big data, IoT (Internet of Things), cloud computing and mobile is accelerating across all industries and global companies have fundamentally reorganized customer experiences, business models, and operations centering on digital transformation. Business innovation drives productivity improvement, process simplification, price, competitiveness and sustainable expansion. Whether digital transformation will be necessary for the current industrial environment is no longer important, and how quickly companies achieve digitalization has emerged as the utmost crucial element in industrial continuity. As non-face-to-face and remote technologies have begun in earnest, and accelerated in the pharmaceutical industry. They are looking for ways to provide value, generate profits, improve efficiency, and sustain the future. Compared to other industries, the pharmaceutical-related sectors have shown high interest in digital transformation especially to reduce costs and meet the challenge of delivering products during the pandemic environment.