• Title/Summary/Keyword: AI & IoT

Search Result 359, Processing Time 0.035 seconds

Efficient Data Preprocessing Scheme for Audio Deep Learning in Solar-Powered IoT Edge Computing Environment (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 데이터 전처리 기법)

  • Yeon-Tae Yoo;Chang-Han Lee;Seok-Mun Heo;Na-Kyung You;Ki-Hoon Kim;Chan-Seo Lee;Dong-Kun Noh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.81-83
    • /
    • 2023
  • 태양 에너지 수집형 IoT 기기는 주기적으로 재충전되는 태양 에너지의 특성상, 에너지 소모를 최소화하기보다는 수집된 에너지를 최대한 유용하게 사용하는 것이 중요하다. 한편, 데이터 기밀성과 프라이버시, 응답속도, 비용 등의 이유로 클라우드가 아닌 데이터 소스 근처에서 머신러닝을 수행하는 엣지 AI에 대한 연구도 활발한데, 그 중 하나는 여러 IoT 장치들이 수집한 오디오 데이터를 활용하여, 다양한 AI 응용들을 IoT 엣지 컴퓨팅 환경에서 제공하는 것이다. 그러나, 이와 관련된 많은 연구에서, IoT 기기들은 에너지의 제약으로 인하여, 엣지 서버(IoT 서버)로의 센싱 데이터 전송만을 수행하고, 데이터 전처리를 포함한 모든 AI 과정은 엣지 서버에서 수행한다. 이 경우, 엣지 서버의 과부하 문제 뿐 아니라, 학습 및 추론에 불필요한 데이터까지도 서버에 그대로 전송되므로 네트워크 과부하 문제도 야기한다. 또한, 이를 해결하고자, 데이터 전처리 과정을 각 IoT 기기에 모두 맡긴다면, 기기의 에너지 부족으로 정전시간이 증가하는 또 다른 문제가 발생한다. 본 논문에서는 각 IoT 기기의 에너지 상태에 따라 데이터 전처리 여부를 결정함으로써, 기기들의 정전시간 증가 문제를 완화시키면서 서버 집중형 엣지 AI 환경의 문제들(엣지 서버 및 네트워크 과부하)을 완화시키고자 한다. 제안기법에서 IoT 장치는 기기가 기본적으로 동작하는 데 필요한 에너지 외의 여분의 에너지 양을 예측하고, 이 여분의 에너지가 있는 경우에만 이를 사용하여 기기에서 전처리 과정, 즉 수집 대상 소리 판별과 잡음 제거 과정을 거친 후 서버에 전송함으로써, IoT기기의 정전시간에 영향을 주지 않으면서, 에너지 적응적으로 데이터 전처리 위치(IoT기기 또는 엣지 서버)를 결정하여 수행한다.

AI Model Repository for Realizing IoT On-device AI (IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리)

  • Lee, Seokjun;Choe, Chungjae;Sung, Nakmyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.597-599
    • /
    • 2022
  • When IoT device performs on-device AI, the device is required to use various AI models selectively according to target service and surrounding environment. Also, AI model can be updated by additional training such as federated learning or adapting the improved technique. Hence, for successful on-device AI, IoT device should acquire various AI models selectively or update previous AI model to new one. In this paper, we propose AI model repository to tackle this issue. The repository supports AI model registration, searching, management, and deployment along with dashboard for practical usage. We implemented it using Node.js and Vue.js to verify it works well.

  • PDF

Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model (AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현)

  • Kim, Seoyeon;Yun, Young-Sun;Eun, Seong-Bae;Cha, Sin;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.71-77
    • /
    • 2021
  • Recently, there is a demand for efficient program development of an IoT application support frameworks considering heterogeneous hardware characteristics. In addition, the scope of hardware support is expanding with the development of neuromorphic architecture that mimics the human brain to learn on their own and enables autonomous computing. However, most existing IoT IDE(Integrated Development Environment), it is difficult to support AI(Artificial Intelligence) or to support services combined with various hardware such as neuromorphic architectures. In this paper, we design an AI component abstract model that supports the second-generation ANN(Artificial Neural Network) and the third-generation SNN(Spiking Neural Network), and implemented an autonomous IoT IDE based on the proposed model. IoT developers can automatically create AI components through the proposed technique without knowledge of AI and SNN. The proposed technique is flexible in code conversion according to runtime, so development productivity is high. Through experimentation of the proposed method, it was confirmed that the conversion delay time due to the VCL(Virtual Component Layer) may occur, but the difference is not significant.

Automatic Generation Tool for Open Platform-compatible Intelligent IoT Components (오픈 플랫폼 호환 지능형 IoT 컴포넌트 자동 생성 도구)

  • Seoyeon Kim;Jinman Jung;Bongjae Kim;Young-Sun Yoon;Joonhyouk Jang
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.32-39
    • /
    • 2022
  • As IoT applications that provide AI services increase, various hardware and software that support autonomous learning and inference are being developed. However, as the characteristics and constraints of each hardware increase difficulties in developing IoT applications, the development of an integrated platform is required. In this paper, we propose a tool for automatically generating components based on artificial neural networks and spiking neural networks as well as IoT technologies to be compatible with open platforms. The proposed component automatic generation tool supports the creation of components considering the characteristics of various hardware devices through the virtual component layer of IoT and AI and enables automatic application to open platforms.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Cybersecurity Audit of 5G Communication-based IoT, AI, and Cloud Applied Information Systems (5G 통신기반 IoT, AI, Cloud 적용 정보시스템의 사이버 보안 감리 연구)

  • Im, Hyeong-Do;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.428-434
    • /
    • 2020
  • Recently, due to the development of ICT technology, changes to the convergence service platform of information systems are accelerating. Convergence services expanded to cyber systems with 5G communication, IoT, AI, and cloud are being reflected in the real world. However, the field of cybersecurity audit for responding to cyber attacks and security threats and strengthening security technology is insufficient. In this paper, we analyze the international standard analysis of information security management system, security audit analysis and security of related systems according to the expansion of 5G communication, IoT, AI, Cloud based information system security. In addition, we design and study cybersecurity audit checklists and contents for expanding security according to cyber attack and security threat of information system. This study will be used as the basic data for audit methods and audit contents for coping with cyber attacks and security threats by expanding convergence services of 5G, IoT, AI, and Cloud based systems.

A Bibliometric Comparative Analysis on the Applications of AI, IoT, and Big Data to Energy Efficiency

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2024
  • Artificial intelligence (AI), the Internet of Things (IoT), and Big Data are playing important roles in improving or upgrading energy efficiency. Furthermore, their roles in energy efficiency are expected to become more and more essential. This study conducted a bibliometric comparative analysis on the features in the articles on the AI, the IoT, and the Big Data in energy efficiency by using the Web of Science database and compared the features in their trends in article publications, citations, countries, research areas, journals, and funding agencies from 2012 to 2022. This study attempted to make significant contributions by shedding new light on the following features. Among the AI, the IoT, and the Big Data in energy efficiency, the most articles were published and the most article citations were received in the AI in energy efficiency. China was found out to be the most leading country. Engineering and computer science were revealed to be the first research area. IEEE Access and IEEE Internet of Things were ranked with first journal. National Natural Science Foundation of China was the first research funding agency concerning the articles published in the AI, the IoT, and the Big Data in energy efficiency from 2012 to 2022.

Hierarchical IoT Edge Resource Allocation and Management Techniques based on Synthetic Neural Networks in Distributed AIoT Environments (분산 AIoT 환경에서 합성곱신경망 기반 계층적 IoT Edge 자원 할당 및 관리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • The majority of IoT devices already employ AIoT, however there are still numerous issues that need to be resolved before AI applications can be deployed. In order to more effectively distribute IoT edge resources, this paper propose a machine learning-based approach to managing IoT edge resources. The suggested method constantly improves the allocation of IoT resources by identifying IoT edge resource trends using machine learning. IoT resources that have been optimized make use of machine learning convolution to reliably sustain IoT edge resources that are always changing. By storing each machine learning-based IoT edge resource as a hash value alongside the resource of the previous pattern, the suggested approach effectively verifies the resource as an attack pattern in a distributed AIoT context. Experimental results evaluate energy efficiency in three different test scenarios to verify the integrity of IoT Edge resources to see if they work well in complex environments with heterogeneous computational hardware.

Changes in the Industrial Structure caused by the IoT and AI (사물인터넷과 AI가 가져올 산업구조의 변화)

  • Kim, Jang-Hwan
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.93-99
    • /
    • 2017
  • Recently IoT(Internet of Things) service industry has grown very rapidly. In this paper, we investigated the changes in IoT service industry as well as new direction of human life in future global society. Under these changing market conditions, competition has been also changed into global and ecological competition. But compared to the platform initiatives and ecological strategies of global companies, Korean companies' vision of building ecosystems is still unclear. In addition, there is a need of internetworking between mobile and IoT services. IoT security Protocol has weakness of leaking out information from Gateway which connected wire and wireless communication. As such, we investigate the structure of IoT and AI service ecosystem in order to gain strategic implications and insights for the security industry in this paper.

Trends in Utilizing Satellite Navigation Systems for AI and IoT (AI 및 IoT에 대한 위성항법시스템 활용 동향)

  • Heui-Seon Park;Jung-Min Joo;Suk-Seung Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.761-768
    • /
    • 2023
  • In the 4th Industrial Revolution, AI(Artificial Intelligence) and IoT(Internet of Things) technologies are being applied to across various fields, with particularly prominence in asset management, disaster management, and meteorological observation. In these fields, it is necessary to accurately determine the real-time and precise tracking of the object's location and status, and to collect various data even in situations that are difficult to detect with existing sensors. In order to address these demands, the use of GNSS(Global Navigation Satellite System) is essential, and this technology enables the efficient management of assets, disaster prevent and response, and accurate weather forecasting. In this paper, we provide the investigated results for the latest trends in the application of GNSS in the fields of asset management, disaster management, and weather observation, among various fields incorporating AI and IoT and analyze them.