• Title/Summary/Keyword: AGV controller

Search Result 74, Processing Time 0.037 seconds

A Study on the Path-tracking of an Automated Guided Vehicle Using Digital PD Controller (PD제어기를 이용한 AGV의 경로추종에 관한 연구)

  • Lee, Jong-Sung;Won, Young-Jin;Seong, Hong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1037-1038
    • /
    • 2006
  • This paper treats the guide path tracking problem of an experimental automated guided vehicle. An experimental guide path is made of aluminium foil which has width of 2[cm]. A digital Proportional and Derivative controller is used to manipulate the steering system and it is verified by laboratory experiments that the designed AGV tracks the guide path withen the range of 3.2[cm] deviation.

  • PDF

Job Deployment and Dynamic Routing for Container-AGVs (컨테이너용 AGV의 작업할당과 동적 경로계획)

  • So Myung-Ok;Lee Hyun-Sik;Jin Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.369-376
    • /
    • 2005
  • In recent years, AGVs(Automated Guided Vehicles) have received growing attention as a subsystem of the integrated container operating system which enables unmanned control. improvement of job reliability, accuracy and productivity. Therefore, a number of works have been done to enhance the performance AGVs. In this paper. job deployment and a dynamic routing control system composed of supervisor, traffic controller. motion controller and routing table are discussed. A simple job deployment scheme and an efficient dynamic routing algorithm incorporating with the deadlock prediction and avoidance algorithm are investigated.

Fuzzy Logic Controller for a Mobile Robot Navigation (퍼지제어기를 이용한 무인차 항법제어)

  • Chung, Hak-Young;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.713-716
    • /
    • 1991
  • This paper describes a methodology of mobile robot navigation which is designed to carry heavy payloads at high speeds to be used in FMS(Flexible Manufacturing System) without human control. Intelligent control scheme using fuzzy logic is applied to the navigation control. It analyzes sensor readings from multi-sensor system, which is composed of ultrasonic sensors, infrared sensors and odometer, for environment learning, planning, landmark detecting and system control. And it is implemented on a physical robot, AGV(Autonomous Guided Vehicle) which is a two-wheeled, indoor robot. An on-board control software is composed of two subsystems, i.e., AGV control subsystem and Sensor control subsystem. The results show that the navigation of the AGV is robust and flexible, and a real-time control is possible.

  • PDF

A Study of Line Recognition and Driving Direction Control On Vision based AGV (Vision을 이용한 자율주행 로봇의 라인 인식 및 주행방향 결정에 관한 연구)

  • Kim, Young-Suk;Kim, Tae-Wan;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2341-2343
    • /
    • 2002
  • This paper describes a vision-based line recognition and control of driving direction for an AGV(autonomous guided vehicle). As navigation guide, black stripe attached on the corridor is used. Binary image of guide stripe captured by a CCD camera is used. For detect the guideline quickly and extractly, we use for variable thresholding algorithm. this low-cost line-tracking system is efficiently using pc-based real time vision processing. steering control is studied through controller with guide-line angle error. This method is tested via a typical agv with a single camera in laboratory environment.

  • PDF

A Study on the Driving Control for the Automated Guided Vehicle using Microprocessor (마이크로 프로세서를 이용한 무인운반차량의 주행제어에 관한 연구)

  • Kim, B.K.;Kim, J.T.;Kim, Y.S.;Oh, H.C.;Lee, H.K.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.432-434
    • /
    • 1998
  • Recently, For the material transport is increased, the AGV(Automated Guided Vehicle) is the most important part in the industrial factory. So we treat the navigation control problem and experimental results using microprocessor. In navigation control, we have faced with velocity control problem related to guide path tracking problem. Carefully, In the straight line, the AGV moves at its high speed, but in the curve line, especially when the radian ratio is very big it is difficult to follow guide line. So, Using fuzzy controller we have simulated the guide path following AGV according to the varying velocity and experimented it with microprocessor.(Intel 80C196KC) Now, If we use the AGV industrial factory, we will improve the product and efficiency in spite of changing the factory environment.

  • PDF

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

보급형 센서를 장착한 자율주행로봇의 위치제어기 설계 및 제작

  • 홍순학;최병홍;한석균;박종현;김용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.566-569
    • /
    • 1993
  • This paper presents the design and implementation of an industrial controller for an autonomous guided vehicle(AGV) with economic sensor. A guidance scheme provides accurate tracking and achieves faster minimizing oftracking error. A sensor at the center provides the position and orientation of the vehicle relative to the track. Control laws that make use of this information have been devised to achieve accurate and fast tracking. The gains are modified on-line to achieve proper tracking. The simulation and implementation results are provided for the illustration of the implemented controller.

  • PDF

A study on flexible manufacturing system for engine cylinder block (엔진 실린더 블럭 가공라인의 자동화 시스템에 관한 연구)

  • 전용철;윤병용;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.544-546
    • /
    • 1986
  • In this report, we have designed a Flexible Manufacturing System(FMS) for Engine-Cylinder block that is composed of maching center, special purpose machine, AGV(Automatic Guided Vehicle), using Micro-Computer and Programmable Controller(PC). From this report, we mostly present hardware features and scheduling software.

  • PDF

A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구)

  • Kim, Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

Development and Verification of the Automated Cow-Feeding System Driven by AGV (무인이송로봇기반 자동 소사료 공급 시스템 개발 및 검증)

  • Ahn, Sung-Su;Lee, Yong-Chan;Yoo, Ji-Hun;Lee, Yun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.232-241
    • /
    • 2017
  • This paper presents an automated cow-feeding system based on an AGV and screw conveyor for domestic livestock farms, which are becoming larger and more commercialized. The system includes a hopper module for loading pellet-type mixed feed at the top of the system, a transfer module mounted with a screw conveyor to transfer feed from the hopper module to the outlet module, an outlet module composed of belt conveyors, and an electromagnetic guided driving-type AGV. The weight of the loaded feed is measured by a load cell located under the transfer module. The system reads the feed discharge information stored in RFID tags installed in each cowshed cell, and a predetermined amount of feed is discharged while the AGV is moving. A cow-feed test system was constructed to determine the design parameters of the screw conveyor in the transfer module that determine the feeding capacity. These parameters include the screw's outer diameter, the screw shaft outer diameter, and screw pitch. The parameters were applied to the finalized cow-feed system construction. A DSP-based main controller and cow-feeding algorithm for different scenarios were also developed to control the system. Experimental results confirmed that the system could supply a total of 21 kg of feed uniformly at 420 g/s for a cowshed cell which has 7 cows. The driving distance was 5 m and the speed was 0.1 m/s. Thus, the proposed system could be applied to standardized domestic livestock farms.