• Title/Summary/Keyword: AGV (Automated guided vehicle)

Search Result 129, Processing Time 0.035 seconds

Battery Pack and Management System for Automated Guided Vehicle (AGV용 배터리 팩 및 관리시스템)

  • Nam, Jong-ha;Kang, Duk-ha;Hwang, Ho-seok;Park, Chan-hi;Lee, Heui-kwan;Park, Min-kee
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.138-139
    • /
    • 2011
  • 무인 운반차(AGV, Automated Guided Vehicle)은 1955년에 개발된 자재 운반용 무인운송 시스템으로 초기에는 제조 현장에서 자재의 운송에 국한되어 사용되었다. 최근에는 창고, 컨테이너 터미널 그리고 지하공간에서의 반복되는 실내/외 운송으로까지 그 사용이 확산되고 있다. AGV는 제조현장에서 제조 공정과 관련된 모든 자재의 이송에 적용되고 반복되는 운송의 형태에 사용되며, 실내 용도로는 수입, 저장, 분류, 반출, 이송과 공정 간의 파레트(Pallet) 이송에 사용되며, 비교적 작은 용량의 AGV가 이러한 제조현장에서 산업용도에 쓰이고 있다. AGV는 실내에서 주로 사용되는 환경적 특성상 배터리를 사용하며, 충전하거나 교환하여야 하며, 이에 소요되는 시간이 시스템의 성능에 큰 영향을 미친다. 대부분의 제조현장이나 배송센터에서 AGV는 비교적 짧은 거리를 운행하므로 대기 시간 중에 배터리를 충전하거나 교환이 가능하다. 하지만 비교적 장거리를 운행하는 시스템에서는 AGV의 가동률을 50% 이하로 유지하거나 온라인 충전 시스템을 구비하여야만 배터리 전압 강하에 의한 시스템의 마비를 예방할 수 있다.

  • PDF

Operation control algorithm for an automated manufacturing system with travel of AGV (자동화생산시스템에서 AGV의 운송시간을 고려한 작업제어기법)

  • 최정상;고낙용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.287-297
    • /
    • 1997
  • This research is concerned with operation control problem for an automated manufacturing system which consists of two machine centers and a single automatic guided vehicle. The objective is to develop and evaluate heuristic scheduling procedures that minimize maximum completion time to be included travel time of AGV. A new heuristic algorithm is proposed and a numerical example illustrates the proposed algorithm. The heuristic algorithm is implemented for various cases by SLAM II. The results show that the proposed algorithm provides better solutions than the previous algorithms.

  • PDF

Steering Control of Unmaned Container Transporter Using MRAC (MRAC 기법을 이용한 무인 컨테이너 운송차량의 조향 제어)

  • Lee, Y.J.;Huh, N.;Choi, J.Y.;Lee, K.S.;Lee, M.H.
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.291-301
    • /
    • 2000
  • T his paper presents the lateral and longitudinal control algorithm for the driving of a 4WS AGV(Automated Guided Vehicle). The control law to the lateral and longitudinal control of the AGV includes adaptive agin tuning ability, that is the controller gain of the gravity compensated PD controller can be changed on a real-time. The gain tuning law is derived from the Lyapunov direct method using the output error of the reference model and the actual model, And to show the performance of the presented lateral and longitudinal control algorithm, we simulate toe nonlinear AGV equations of the motion by deriving the Newton-Euler Method, The read path is from quay yard area to docking position in loading yard area. The quay yard area is where the quay crane loads the container to the AGV and the docking position is where the container is transferred to the gantry crane. The road types are constructed in a straight line and J-turn. When driving the straight line, the driving velocity is 6㎧ and the J-turn is 3㎧.

  • PDF

A Multi-attribute Dispatching Rule Using A Neural Network for An Automated Guided Vehicle (신경망을 이용한 무인운반차의 다요소배송규칙)

  • 정병호
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.77-89
    • /
    • 2000
  • This paper suggests a multi-attribute dispatching rule for an automated guided vehicle(AGV). The attributes to be considered are the number of queues in outgoing buffers of workstations, distance between an idle AGV and a workstation with a job waiting for the service of vehicle, and the number of queues in input buffers of the destination workstation of a job. The suggested rule is based on the simple additive weighting method using a normalized score for each attribute. A neural network approach is applied to obtain an appropriate weight vector of attributes based on the current status of the manufacturing system. Backpropagation algorithm is used to train the neural network model. The proposed dispatching rules and some single attribute rules are compared and analyzed by simulation technique. A number of simulation runs are executed under different experimental conditions to compare the several performance measures of the suggested rules and some existing single attribute dispatching rules each other.

  • PDF

Design of Experiment and Analysis Method for the Integrated Logistics System Using Orthogonal Array (직교배열을 이용한 통합물류시스템의 실험 설계 및 분석방법)

  • Park, Youl-Kee;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5622-5632
    • /
    • 2011
  • This paper presents the simulation design and analysis of Integrated Logistics System(ILS) which is operated by using the AGV(Automated Guided Vehicle). To maximize the operation performances of ILS with AGV, many parameters should be considered such as the number, velocity, and dispatching rule of AGV, part types, scheduling, and buffer sizes. We established the design of experiment in a way of Orthogonal Array in order to consider (1)maximizing the throughput; (2)maximizing the vehicle utilization; (3)minimizing the congestion; and (4)maximizing the Automated Storage and Retrieval System(AS/RS) utilization among various critical factors. Furthermore, we performed the optimization by using the simulation-based analysis and Evolution Strategy(ES). As a result, Orthogonal Array which is conducted far fewer than ES significantly saved not only the time but the same outcome when compared after validation test on the result from the two methods. Therefore, this approach ensures the confidence and provides better process for quick analysis by specifying exact experiment outcome even though it provides small number of experiment.

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Vehicle Travel Time Analysis in Automated Guided Vehicle Systems (무인운반차 기반 물류시스템에서의 이동시간 분석)

  • 구평회;장재진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.1
    • /
    • pp.97-108
    • /
    • 2001
  • Design and evaluation of AGV-based material handling systems are very complicated due to the randomness and the large number of variables involved Vehicle travel time is a key parameter for designing and evaluating AGV systems. Although loaded travel time is relatively easy to estimate, determination of empty vehicle travel time is difficult due to the inherent randomness of material handling systems. Most previous studies assume that the empty vehicle travel time is the same as the loaded travel time or assume very specific environments. This paper presents new vehicle travel time models for AGV-based material transport systems. The research effort is focused on the estimation of empty vehicle travel time under various vehicle dispatching policies. Simulation experiments are used to verify the proposed travel time models.

  • PDF

A Performance Comparison between Operation Strategies for Idle Vehicles in Automated Guided Vehicle System

  • Kim, Kap-Hwan;Kim, Jae-Yeon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.67-81
    • /
    • 1998
  • An Automated Guided Vehicle System (AGVS) with a unidirectional loop guide path is modeled as a discrete-time stationary Markov chain. It is discussed how to estimate the mean response time, the utilization, and the cycle time of AGV for a delivery order. Three common operation strategies for idle vehicles - central zone positioning rule, circulatory loop positioning rule and point of release positioning rule - are analyzed. These different operation strategies are compared with each other based on the performance measures.

  • PDF

Study on Wireless Charging Pad Design for Automated Guided Vehicle (AGV용 무선 충전 패드 설계에 관한 연구)

  • Shin, Chang-Su;Jo, Seung jin;Kim, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.187-189
    • /
    • 2020
  • 본 논문은 AGV(Automated Guided Vehicle)용 규격에 적합한 자기 유도 방식의 무선 전력 전송 패드 설계 디자인을 제안한다. 제한된 공간에서의 최적설계를 위해 코일의 직경, 턴수, 페라이트의 배치에 따른 관련 파라미터의 상관관계를 분석하며 유한요소해석 시뮬레이션을 통해 대해 비교 및 선정한다. 제안한 설계 결과는 3kW급 하드웨어를 제작하여 검증하며, 발열 및 효율을 확인한다.

  • PDF

Deadlock-free Routing of an AGV in Accelerated Motion (가감속을 고려한 교착없는 AGV 주행경로설정)

  • Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.855-860
    • /
    • 2006
  • In the environment where multiple AGVs(Automated Guided Vehicles) operate concurrently in limited space, collisions, deadlocks, and livelocks which have negative effect on the productivity of AGVs occure more frequently. The accelerated motion of an AGV is also one of the factors that make the AGV routing more difficult because the accelerated motion makes it difficult to estimate the vehicle's exact travel time. In this study, we propose methods of avoiding collisions, deadlocks, and livelocks using OAR(Occupancy Area Reservation) table, and selecting best route by estimating the travel time of an AGV in accelerated motion. A set of time-driven simulation works validated the effectiveness of the proposed methods.