• Title/Summary/Keyword: AGN

Search Result 306, Processing Time 0.023 seconds

Local Environmental Effects on AGN Activities

  • Kim, Jaemin;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.44.2-44.2
    • /
    • 2013
  • The local environmental effects on the active galactic nucleus(AGN) activity has been studied by many authors, but there is still controversy. We performed statistical analysis for nearby(0.01 < z < 0.05) volume limited(Mr < -19) sample via visual inspection based on Sloan Digital Sky Survey Data Release7. We visually inspect around 50,000 galaxy images to find peculiar objects which show not only ongoing merging features and tidal features, but also post merging features like shell or ring structures. We found that the frequency of AGN host galaxies is at least 2 times higher among peculiar galaxies than non-peculiar galaxies, and this trend is still visible when galaxy properties such as color or stellar mass are fixed. Furthermore, L[OIII] of peculiar galaxies is found to be more increased than those of normal galaxies. The majority of the most luminous AGN hosts show peculiar feature, which indicates that the luminous AGN galaxies may be the result of the local environmental effects. In addition, the enhancement of L[OIII] in peculiar galaxies is more significant for bluer galaxies, which implies that AGN activity is enhanced effectively when gas is available. In order to ensure our results, we also checked it for a smaller subsample with 2 magnitude deeper monochromatic images provided by SDSS Stripe82 database, and found consistent results. Overall, the results of this study tell us that the local environment of galaxies affects the frequency as well as the strength of AGN activity.

  • PDF

Starburst and AGN activity in local infrared luminous galaxies

  • Lee, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Luminous infrared galaxies (LIRGs; $L_{IR}$ > ${10^{11}}_{Lsun}$) are the most powerful objects in the local Universe. Previous work suggested that dust re-processing of starburst and/or active galactic nuclei (AGN) activity, triggered by galaxy interactions, is responsible for their enormous infrared emission. To understand the nature of LIRGs, it is essential to determine their spectral types. Optical spectral types of 115 ultraluminous infrared galaxies in the southern sky are presented using CTIO observations. The AGN fraction is on average 50% and increases with infrared luminosity. Near-infrared spectral types of 36 LIRGs are also presented based on AKARI observations. In the sample, 12 optically elusive buried AGNs are found. To investigate the evolutionary sequence of LIRGs, star formation histories of ~6000 LIRGs in the SDSS and IRAS/AKARI matched sample are derived by comparing observed optical spectra and stellar population models. AGN-dominated LIRGs are currently massive relative to starburst-dominated LIRGs, which originates from an enhancement of star formation at intermediate-ages. For ~1100 early-type LIRGs, optical and NIR fundamental planes (FPs) are constructed. The FP of LIRGs is significantly different from that of normal early-type galaxies, but the difference is minimized in low luminous and AGN-like LIRGs. These findings support that the importance of AGN is growing as infrared luminosity increases and that LIRGs follow at least in the high mass regime the standard evolutionary scenario: starburst LIRGs evolve into AGN LIRGs and finally into normal early-type galaxies.

  • PDF

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

Circumnuclear gas around the central AGN in a cool-core cluster, A1644-South

  • Baek, Junhyun;Chung, Aeree;Kim, Jae-Woo;Jung, Taehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.30.2-31
    • /
    • 2020
  • We present the properties of circumnuclear gas associated with the AGN located in the center of Abell 1644-South. A1644-S is the main cluster in a merging system, which is also known for gas sloshing in its core as seen in X-ray. The X-ray emission of A1644-S shows a rapidly declining profile, indicating the presence of cooling gas flow. This flow of cool gas may fuel the supermassive black hole embedded in the brightest cluster galaxy, leading to the activation of the central AGN. Indeed, we find a parsec-scale bipolar jet feature in the center of A1644-S in our recent KaVA observation, which implies that its central AGN is likely to have been (re)powered quite recently. In order to verify the hypothesis that cooling gas flow in the cluster core can (re)activate the central AGN, we probe the cold gas properties of the central 1 kpc region of A1644-S using the archival VLA and ALMA data. Based on the spatially resolved morphology and kinematics of HI and CO gas, we challenge to identify inflow/outflow gas streams and clumps. We study the role of circumnuclear cool gas in fueling the centrally located cluster AGN in the cool-core environment. We also discuss how the feedback due to the (re)powered AGN affects the surrounding medium.

  • PDF

Radio-loud AGN in the AKARI-NEP field

  • Karouzos, M.;Im, M.;Takagi, T.;Matsuhara, H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2012
  • A unique ensemble of datasets is available for the AKARI North Ecliptic Pole (NEP) field, having being observed virtually across the whole electromagnetic spectrum. We have undertaken a study of radio sources in the NEP field and in particular radio-loud AGN. We present preliminary results concerning the identification of these radio-loud AGN using a host of different selection criteria. We aim to study the host galaxies of these systems within the current framework of galaxy evolution and the role that AGN play in it.

  • PDF

THE 3.3 ㎛ PAH FEATURE AS A SFR INDICATOR: PROBING THE INTERPLAY BETWEEN SF AND AGN ACTIVITIES

  • Kim, Ji Hoon;Im, M.;Kim, D.;Woo, J.H.;Park, D.;Imanishi, M.;AMUSES Team, AMUSES Team;LQSONG Team, LQSONG Team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.281-284
    • /
    • 2012
  • We utilize AKARI's slitless spectroscopic capability to detect the $3.3{\mu}m$ polycyclic aromatic hydrocarbons (PAHs) emission and measure star formation (SF) activity for various AKARI programs. First, we obtain $2{\sim}5{\mu}m$ spectra of 20 flux-limited galaxies with mixed SED classes in order to calibrate the $3.3{\mu}m$ PAH luminosity ($L_{PAH3.3}$) as a star formation rate (SFR) indicator. We find that $L_{PAH3.3}$ correlates with $L_{IR}$ as well as with the $6.2{\mu}m$ PAH luminosity ($L_{PAH6.2}$). The correlations does not depend on SED classes. We find that ULIRGs deviate from the correlation between PAH luminosities and $L_{IR}$, while they do not for the correlation between PAH luminosities. We suggest possible effects to cause this deviation. On the other hand, how AGN activity is linked to SB activity is one of the most intriguing questions. While it is suggested that AGN luminosity of quasars correlates with starburst (SB) luminosity, it is still unclear how AGN activity is connected to SF activity based on host galaxy properties. We are measuring SFRs for the LQSONG sample consisting of reverberation mapped AGNs and PG-QSOs. This is an extension of the ASCSG program by which we investigated the connection between SB and AGN activities for Seyferts type 1s at z ~ 0.36. While we found no strong correlation between $L_{PAH3.3}$ and AGN luminosity for these Seyferts 1s, $L_{PAH3.3}$ measured from the central part of galaxies correlates with AGN luminosity, implying that SB and AGN activities are directly connected in the nuclear region.

The AGN-Bar Connection

  • Lee, Gwang-Ho;Woo, Jong-Hak;Lee, Myung-Gyoon;Park, Chang-Bom;Choi, Yun-Young;Hwang, Ho-Seong;Lee, Jong-Hwan;Sohn, Ju-Bee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.33.1-33.1
    • /
    • 2010
  • We investigate the relation between the presence of bars in galaxies and AGN activities. Bars are believed to play an important role in fueling of AGN. Although there have been many previous studies on this topic, "the AGN-Bar Connection" is still an open question. To better understand the connection, we use a volume-limited sample of 9,726 late-type galaxies brighter than $M_r$=-19.5+5logh at $0.02{\leqq}z{\leqq}0.05489$, drawn from SDSS DR7. Among galaxies in the sample, 1,963 galaxies are classified as AGN-host galaxies based on the emission-line ratios while barred galaxies are identified by visual inspection. The bar fraction in AGN host galaxies (22.5%) is 3-times higher than in star-forming galaxies (8.6%). However, this trend is simply caused by the fact that the bar fraction increases with galaxy mass or luminosity and that AGN host galaxies are on average more massive than star-forming galaxies. Nevertheless, we find that among AGN host galaxies, the bar fraction increases with the Eddington ratio $(L_{[OIII]}/M_{[BH]})$, and this trend remains intact even at fixed galaxy luminosity and stellar velocity dispersion. These results imply that bars play a role in triggering AGNs.

  • PDF

The Regulatory Effect of Angelica gigas Nakai on Immune Enhancement and Cytokine Production in vivo and in vitro (참당귀(Angelica gigas Nakai)의 체력증진 및 면역조절효과)

  • Jeon, Yong-Deok;Kim, Su-Jin
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.411-416
    • /
    • 2022
  • Natural products are important sources for drug development because they have a wide variety of useful biological properties. Angelica gigas Nakai (AGN) has been used as an herbal medicine for treatment of colds, pain, and anemia. The present study was designed to evaluate the regulatory effect of AGN on immune enhancement in vivo and in vitro. To investigate the immune-enhancing effect of AGN, we used forced swimming test (FST) experimental model. Mice were orally administered by AGN or distilled water for 14 days and then immobility time and biological parameters in serum were measured. The results showed that immobility time in AGN treatment group was significantly reduced in comparison with the control group. Plasma levels of blood urea nitrogen and lactate dehydrogenase in AGN group was significantly decreased compared with control group. Additionally, we showed that AGN treatment significantly increased immune-related cytokines such as interleukin (IL)-4, IL-2, and interferon (IFN)-𝛾 levels in Molt-4 cells. Collectively, the findings provide experimental evidence that AGN may be effective in improving immune function.

Testing delayed AGN feedback using star formation rate measurements by SED fitting with JCMT/SCUBA-2 data

  • Kim, Changseok;Jadhav, Yashashree;Woo, Jong-Hak;Chung, Aeree;Baek, Junhyun;Lee, Jeong Ae;Shin, Jaejin;Hwang, Ho Seong;Luo, Rongxin;Son, Donghoon;Kim, Hyungi;Woo, Hyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2021
  • The impact of AGN on star formation is one of the main questions in AGN-galaxy coevolution studies. However, direct evidence of AGN feedback is still rare. One of the main obstacles is that various star formation rate (SFR) indicators are contaminated by AGN contribution. We present IR-based SFR measurements of a sample of 52 local (z<0.3) AGNs, which were selected based on kinematical properties of ionized gas outflows, using SED analysis with JCMT/SCUBA-2 data. First, we will compare IR-based SFR with other SFR indicators to check the reliability of the SFR indicators. Second, we will discuss the contribution of Mid-IR emission from hot dust of AGN torus by comparing SED fitting results with and without including AGN dust component. Finally, we will report the correlation between specific SFR (sSFR) and AGN activity (e.g., outflow strength or Eddington ratio) as evidence of no instantaneous feedback and discuss the implications of these results

  • PDF

AGN BROAD LINE REGIONS SCALE WITH BOLOMETRIC LUMINOSITY

  • TRIPPE, SASCHA
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.203-206
    • /
    • 2015
  • The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity, λLλ, as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with the bolometric AGN luminosity rather than λLλ, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on Hα/Hβ and CIV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.