• 제목/요약/키워드: AGC(Automatic Generator Control)

검색결과 9건 처리시간 0.028초

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

전력계통 주파수응답 실적 기반의 국내 AGC 주파수 바이어스 설정치 산정에 관한 연구 (A Study on the Frequency Bias Setting of the AGC based on Frequency Response in Korea)

  • 강보람;권한나;국경수
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.978-983
    • /
    • 2015
  • This paper presents Frequency Bias setting for the adequate AGC(Automatic Generator Control) operation based on the frequency response of power system in Korea. AGC frequency control recovers the frequency up to 60Hz following a primary control when the frequency suddenly drops due to a fault in power system. AGC can compensate an appropriate amount of generation by calculating ACE(Are Control Error) from the frequency deviation with the AGC frequency bias set from the actual frequency response in power systems. An appropriateness of the proposed AGC bias setting is verified through case studies employing the simulation model.

자동발전제어(Automatic Generation Control) 운용 개선방안 (A Study on Improvement Plan of AGC Operation)

  • 남재현;윤용범;박시우;추진부;김성학;이진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1070-1072
    • /
    • 1999
  • Automatic Generation Control(AGC) is a control system whose objectives are to hold system frequency close to a specified nominal value and to maintain each unit's generation at the most economic value. It has been used to control the output of a generator by the control signal of the generator, but it is not appropriate to apply to generators which adopt the distributed control system. In this paper a method for improving the AGC operation is proposed, and the different response of each generator and various types of control systems of generators are considered. The interface among Remote Terminal Detector(RTU) and control systems and the direct delivery of the data between EMS and DCS also are proposed in the paper.

  • PDF

터빈-발전기 조속기의 동특성 시험시스템 개발에 관한 연구 (A study on the Turbine-Generator Governor Dynamic Characteristic Testing System)

  • 최형주;이흥호
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1399-1411
    • /
    • 2012
  • The grid frequency is controlled cooperatively by the governor of the Turbine-Generator and the automatic generation controller(AGC) of the KPX(Korea Power Exchange). It is a basic requirement that the reliability of the governor is verified to enhance the power system stability but it is not easy to confirm the response characteristics of the governor because all generators are operated in the grid system that has the constant voltage and frequency. Therefore, it is necessary to study a new test method in order to examine the governor dynamic characteristic in the similar fault conditions. A study has shown that it is verified to simulate the turbine-generator power control system, the governor response characteristic under limited conditions and contribution of AGC with the gas turbine generator simulation model as well as demonstrate the dynamic response of the governor with the developed governor dynamic characteristic tester based on digital controller while the turbine-generator is connected to the grid system. This tester is constructed by the built-in functions of the turbine-generator main controller. In this treatise, the theoretical background, development method and the results of both simulations and demonstrations are described as another way to verify the turbine-generator governor dynamic characteristics.

MB-OFDM UWB에서 효율적인 자동 이득 조절 장치 (Automatic Gain Control Algorithms for MB-OFDM UWB System)

  • 홍대기
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1402-1409
    • /
    • 2007
  • 본 논문에서는 시스템 구현에 직접적으로 사용될 수 있는 직교 주파수 분할 다중화 (OFDM : Orthogonal Frequency Division Multiplexing) 통신 시스템을 위한 여러 가지 자동 이득 제어 (AGC : Automatic Gain Control) 알고리듬을 제안하고자 한다. 본 논문에서는 고속 패킷 전송을 위하여 비교적 많은 샘플 수를 갖고 긴 길이의 프리앰블을 반복적으로 사용하는 초 광대역 통신 (UWB : Ultra-Wideband)과 같은 OFDM 시스템의 디지털 수신 신호를 가정한다. 이러한 OFDM 시스템에서는 프리앰블 신호를 아날로그-디지털 변환기 (ADC : Analog-to-Digital Converter)를 통해 디지털 수신 신호로 변환한 후 최대 샘플 값 계수기내 버퍼의 길이만큼 디지털 수신 신호를 저장한다. 이 후 버퍼에 저장된 디지털 수신 신호 중 최대 샘플의 개수를 계산하고 이득 조절 신호 발생기에 저장된 이득 조절 테이블에 따라 이득을 조절하여 ADC 입력단의 전력 레벨을 자동으로 조절한다.

  • PDF

AGC 운용에 있어서의 원격 On-line 최대 증감발율 취득 기법 (Remote On-line Determination of the Load Rate Limit of Generation in AGC)

  • 권순만;전동훈;문원용;김석주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.119-121
    • /
    • 2000
  • The possibility of a remote on-line determination of the maximum load rates that are basically set at generation plants is investigated in automatic generation control (AGC) system. Energy management system (EMS) generates a test input to a remote power plant to get the samples of the generator output. Then from the samples it can be attempted to determine an approximate value of the load rate limit set by the operator. It is shown in computer simulation that in actual power plants the limit can be approximately determined from the input-output characteristics of the plants for a unit-step input.

  • PDF

자동발전제어(AGC) 운용기선에 관한 연구 (A study on Improvement of Automatic Generation Control Related Systems for New Energy Management System)

  • 전동훈;추진부;윤용범;김성학;이진수;김국헌;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.357-359
    • /
    • 2000
  • This paper is to introduce the R&D project called "Improvement of Automatic Gene-ration Control Related Systems for New Energy Management system". The principal objective of this project is to demonstrate AGC operation capabilities that are suitable to new EMS environment and to show the validity of Set-Point Control Method. A number of developments and enhancements have been made to the generator's Remote Terminal Unit in which new ASTC is being developed and installed. The so-called ACC Signal Transfer Card(ASTC) will include RTU's Set-Point Control capabilities. It is expected that over next few months both RTU & DCS software modifications will be given and a relatively new Set-Point Control Method will be chosen instead of those from more conventional method, pulse control method.

  • PDF

수력발전소 자동제어설비의 현대화 (The Modernization of Automatic Control facilities of Hydro Power Plant)

  • 권오극;권영준;송영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.69-70
    • /
    • 2008
  • Automatic control systems(AVR, Governor, Synchronizer) installed $1970{\sim}1980$ in K-water were considered to be rehabilitated around 2000. Moreover, Korea Power Exchange market system was changed from PPA (Power Purchase Agreement) to a bidding system. Therefore, depending on the power quality, the power provider could achieve additional profits. It is the excitation system and governor that have the functions of enhancing power necessities. During the 20 to 30 years of generator operation, there were many major and minor problems. Examples are SCR burnout (Andong: Excitation system), hunting (Imha: governor), field circuit breaker failure (Chungju 1st: excitation system), the rise of leakage current (Chungju 2nd: excitation system), power supply burnout (Chungju 2nd: governor). These are the typical examples of malfunction which hindered the generator operation and, consequently, diminished the profit of power business. In order to satisfy the needs of the power market and prevent malfunctions mentioned above, the rehabilitation of AVRs and governors were executed. A new system was made to have the flexibility of ancillary service (GF, AGC, etc.), PSS function. With user friendly HMI software, it is more convenient for the operator to fulfill suitable maintenance. It was possible to connect SCADA system by opening protocol of AVR, governor for the efficiency of operation and maintenance.

  • PDF

Development of the Control System for Fast-Responding Frequency Regulation in Power Systems using Large-Scale Energy Storage Systems

  • Lim, Geon-Pyo;Park, Chan-Wook;Labios, Remund;Yoon, Yong-Beom
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.9-13
    • /
    • 2015
  • Energy storage systems (ESS) can be used to provide frequency regulation services in a power system to replace traditional frequency regulation power plants. Battery ESS, in particular, can provide "fast-responding frequency regulation," wherein the facility can respond immediately and accurately to the frequency regulation signal sent by the system operator. This paper presents the development and the trial run results of a frequency regulation control system that uses large-scale ESS for use in a large power system. The control system was developed initially for the 4 MW ESS demonstration facility in Jocheon Jeju Island, and was further developed for use in the 28 MW ESS facility at the Seo-Anseong substation and the 24 MW ESS facility at the Shin-Yongin substation to provide frequency regulation services within mainland Korea. The ESS facility in Seo-Anseong substation responds to a sudden drop in frequency via governor-free control, while the ESS facility in Shin-Yongin responds via automatic generator control (AGC).