• Title/Summary/Keyword: AFM

Search Result 2,388, Processing Time 0.034 seconds

Surface structure and phase separation mechanism of polysulfone membranes by AFM (AFM을 이용한 폴리술폰막의 표면구조와 상분리현상에 관한 연구)

  • 김제영;이환광;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.103-105
    • /
    • 1998
  • Asymmetric polymeric membranes prepared by the phase transition technique usually have either a top layer consisting of closely packed nodules or pores dispersed throughout the membrane surfaces. In this study, we present AFM image of a polysulfone membrane which show a clear evidence for the nodular structure and porous structure resulted from different phase separation mechanisms; spinodal decomposition and nucleation and growth. The surface morphology obtained by SEM and AFM was also compared.

  • PDF

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems (실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적)

  • 김상진;신정호;이성원;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.23-34
    • /
    • 2004
  • In this paper we propose a feature point tracking algorithm using optical flow under non-prior taming active feature model (NPT-AFM). The proposed algorithm mainly focuses on analysis non-rigid objects[1], and provides real-time, robust tracking by NPT-AFM. NPT-AFM algorithm can be divided into two steps: (i) localization of an object-of-interest and (ii) prediction and correction of the object position by utilizing the inter-frame information. The localization step was realized by using a modified Shi-Tomasi's feature tracking algoriam[2] after motion-based segmentation. In the prediction-correction step, given feature points are continuously tracked by using optical flow method[3] and if a feature point cannot be properly tracked, temporal and spatial prediction schemes can be employed for that point until it becomes uncovered again. Feature points inside an object are estimated instead of its shape boundary, and are updated an element of the training set for AFH Experimental results, show that the proposed NPT-AFM-based algerian can robustly track non-rigid objects in real-time.

A Study on Tribological Characteristics of Materials for MEMS/NEMS Using Chemically Modified AFM tip (AFM을 이용한 MEMS/NEMS 공정용 재료의 트라이볼로지 특성에 관한 연구)

  • Heo, Jung-Chul;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2008
  • Friction and adhesion tests were conducted to investigate tribological characteristics of materials for MEMS/NEMS using atomic force microscope (AFM). AFM Si tips were chemically modified with a self-assembled monolayer (SAM) derived from trichlorosilane like octadecyltrichlorosilane (OTS) and (1H, 1H, 2H, 2H-perfluorooctyl) trichlorosilane (FOTS), and various materials, such as Si, Al, Au, Cu, Ti and PMMA films, were prepared for the tests. SAMs were coated on Si wafer by dipping method prior to AFM tip to determine a proper dipping time. The proper dipping time was determined from the measurements of contact angle, surface energy and thickness of the SAMs. AFM tips were then coated with SAMs by using the same coating condition. Friction and adhesion forces between the AFM Si tip modified with SAM and MEMS/NEMS materials were measured. These forces were compared to those when AFM tip was uncoated. According to the results, after coating OTS and FOTS, the friction and adhesion forces on all materials used in the tests decreased; however, the effect of SAM on the reduction of friction and adhesion forces could be changed according to counterpart materials. OTS was the most effective to reduce the friction and adhesion forces when counterpart material was Cu film. In case of FOTS, friction and adhesion forces decreased the most effectively on Au films.

원자간력현미경(AFM)을 이용한 줄기세포의 신경세포로 분화 인지에 관한 연구

  • Gwon, Sang-U;Yang, U-Cheol;Jeon, Song-Hui;Yu, Bo-Yeong;Choe, Yun-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.558-558
    • /
    • 2012
  • 최근의 원자간력현미경(AFM)은 soft한 생체물질을 비파괴적 방법 및 나노크기의 분해능으로 여러 구조적, 물리적 특성 측정이 가능하여 bio분야에 다양이 활용되고 있다. 본 연구에서는 AFM을 이용하여 줄기세포인 BM MSC(bone marrow mesenchymal stem cell)가 신경세포로 분화 여부를 측정하는 방법을 보고하고자 한다. 신경세포의 신호전달은 시냅스에서 신경전달물질을 매개로 하여 이루어지는데, 신경전달물질 중에 D-Glutamic acid는 시냅스후세포에서 흥분성 전위 크기를 증가시킨 상태를 장기간 유지시켜주는 물질로, 특정물질인 Glutamate와 항원-항체 결합을 한다. 본 연구에서는 이 두 물질간의 항원-항체 반응을 활용하여 줄기세포의 신경세포로 분화 여부를 AFM으로 측정하였다. 먼저, 수용성 시료인 두 물질을 증류수에 용해시켜 Mica 기판에 그 용액을 떨어뜨려 자연건조로 시료를 준비한 후, AFM으로 형태 및 크기를 측정하였다. D-Glutamic acid와 Glutamate는 구형 입자 형태를 보였으며, Glutamate의 너비는 ~100 nm이고, D-Glutamic acid는 ~50 nm였다. 두 물질이 든 용액을 섞었을 때, 항원-항체 반응에 의해 다른 크기의 두 구형입자가 붙어 있는 형태가 관찰되었다. 이 반응을 활용하여, 신경세포에서 분비되는 신경전달물질인 D-Glutamic acid를 선별하였다. DMEM 배지에 신경암세포주인 SH-SY5Y 를 접종한 후 $37.6^{\circ}C$의 incubator에서 24시간 배양하고, 화학적 자극(60~70 mM의 KCl 용액을 주입함)을 주어 신경전달물질 분비를 유도하였다. 그 배지에 항체 Glutamate 를 주입하여 자연건조 시킨 후 항원-항체 결합특성을 AFM으로 측정하여, 항원-항체 결합된 이미지와 동일함을 확인하였다. 결과적으로 AFM을 이용한 신경전달물질의 항원-항체 결합여부 측정을 통해, BM MSC 줄기세포의 신경세포로 분화를 판단할 수 있으며, 이 방법은 줄기세포의 특정 세포로의 분화 여부 판단에 활용될 것으로 기대된다.

  • PDF

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

Application of Competitive ELISA Method for Estimation of Urinary Aflatoxin M1 Level (ELISA 방법을 이용한 요중 아플라톡신 M1 측정)

  • Kim, Yong-Dae;Kim, Heon
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.306-310
    • /
    • 2013
  • We compared the efficacy of the competitive ELISA method for measuring the level of urinary aflatoxin M1 (AFM1) with that of the HPLC-fluorescence detector (HPLC-FLD) method. The recovery rate of AFM1 with the ELISA method was 105% (73-124%), and the coefficient of variation of the analysis was 6.85%. The ELISA method showed a 0.20 pg/ml and 0.62 pg/ml limit of detection and limit of quantitation, respectively. In correlation analysis, the two methods showed a very strong and statistically significant correlation (R=0.96, p<0.01). However, in spite of the strong correlation, the ELISA method tended to overestimate the urinary AFM1 concentration compared to the HPLC-FLD method. These results suggest that the competitive ELISA method may be a useful technique for measuring the AFM1 level in high-throughput urine samples, but it needs to be corrected with a regression equation from regression analysis with the HPLC-FLD method.

Fabrication of Superhydrophobic molecules Nanoarray by Dip-pen Nanolithography (나노리소그라피 기술을 이용한 초소수성 불소 실란 분자의 나노패턴 제조)

  • Yeon, Kyung-Heum;Kang, Pil-Seon;Kim, Kyung-Min;Lim, Jun-Hyurk
    • Journal of Adhesion and Interface
    • /
    • v.19 no.4
    • /
    • pp.163-166
    • /
    • 2018
  • Dip-pen nanolithography(DPN) is an atomic force microscope (AFM) based method of generating nano- or micro-patterns. This technique has been used to transfer various ink materials on the substrate through water meniscus formed between AFM tip and the substrate surface. In this study, the heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane (HDFDTMS) ink materials were coated on the pre-coated AFM tip surface with the HDFDTMS molecules. When the tip brought into contact with the hydroxyl-functionalized silicon surface, HDFDTMS ink molecules have been successfully transported from the tip onto the surface via water meniscus. The created array and passivation area showed stable structures on the surface, and the transport of ink materials from the AFM tip to the surface followed linear increase in pattern size with contact time.

A Conversion of AFm Phases by Addition of CaCO3, CaCl2 and CaSO4 · 2H2O (CaCO3, CaCl2 및 CaSO4 · 2H2O 첨가에 의한 AFm상의 변화)

  • 이종규;추용식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • A formation and conversion of AFm phases decisively play role in the hydration, hardening and corrosion processes of various cement. In this study, the conversion of Alumino-Ferrite Monohydrates(AFm) phases under the addition of $CaCO_3,;CaCl_2;and;CaSO_4{cdot}2H_2O$was investigated by the XRD quantitative analysis. The thypical AFm phases are $M_S(monosulfoaluminate),;M_C(monocarboaluminate);and;M_{Cl}(monochloroaluminate and also Called Friedel's salts)$in this cementitious system, The conversion reaction were not occurred in $M_C-CaCO_3,;M_{Cl}-CaCO_3$ and $M_{Cl}-CaCl_2$system. However, in $M_S-CaCO_3$ system, ettringite and $monocarboaluminate(M_C)$ were formed. In $M_S-CaCl_2;system;M_S$ was transformed to Friedel's $salts(M_{Cl})$ and ettringite was formed. In the case of $CaSO_4{cdot}2H_2O$ addition, all AFm $phases(M_S,;M_C;and;M_{Cl})$ were transformed to ettringite. The order of stabilization of AFm phases under $CaCO_3,;CaCl_2;and;CaSO_4{cdot}2H_2O$ was as follows : $M_S< M_C