• Title/Summary/Keyword: AF relay

Search Result 99, Processing Time 0.031 seconds

Outage Probability of Transmit Maximum-Ratio-Combining and Relay Selection Diversity for Amplify-and-Forward Relaying System (증폭 후 전달 릴레이 시스템을 위한 송신 Maximum-Ratio-Combining과 릴레이 선택 다이버시티에 대한 Outage 확률 분석)

  • Min, Hyun-Kee;Lee, Sung-Eun;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.13-18
    • /
    • 2008
  • In this paper, we consider an amplifying-and-forward(AF) dual-hop relaying system where the source node transmits to a destination node with the help of R relay nodes. We assume that the source node equips M transmit antennas, but only one antenna is equipped at the each node of relay and destination. The outage probabilities are presented when the transmit maximum-ratio-combining(MRC) is used at the source-relay(S-R) links, and the best relay selection, which selects only one relay that contributes the most to the received signal-to-noise ratio(SNR) as active relay, is combined. Simulation results validate these analytical results.

Naïve Decode-and-Forward Relay Achieves Optimal DMT for Cooperative Underwater Communication

  • Shin, Won-Yong;Yi, Hyoseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Diversity-multiplexing tradeoff (DMT) characterizes the fundamental relationship between the diversity gain in terms of outage probability and the multiplexing gain as the normalized rate parameter r, where the limiting transmission rate is give by rlog SNR (here, SNR denote the received signal-to-noise ratio). In this paper, we analyze the DMT and performance of an underwater network with a cooperative relay. Since over an acoustic channel, the propagation delay is commonly considerably higher than the processing delay, the existing transmission protocols need to be explained accordingly. For this underwater network, we briefly describe two well-known relay transmissions: decode-and-forward (DF) and amplify-and-forward (AF). As our main result, we then show that an instantaneous DF relay scheme achieves the same DMT curve as that of multiple-input single-output channels and thus guarantees the DMT optimality, while using an instantaneous AF relay leads at most only to the DMT for the direct transmission with no cooperation. To validate our analysis, computer simulations are performed in terms of outage probability.

Secrecy Performance of Secure Amplify-and-Forward Transmission with Multi-Antenna Relay (다중 안테나 릴레이 기반의 Secure Amplifyand-Forward 전송 시스템의 보안 성능 분석)

  • Hwang, Kyu-Sung;Ju, MinChul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.733-738
    • /
    • 2013
  • In this paper, we consider a physical layer security of an amplify-and-forward (AF) transmission in a presence of an eavesdropper in a wiretap channel. The proposed wiretap channel consists of a source, a destination, a relay, and an eavesdropper. Specifically, we consider that the relay has multiple antennas to exploit a diversity gain and a receive/transmit antenna selection schemes are applied to maximize a signal-to-noise ratio. In a practical point of view, we focus on the practical scenario where the relay does not have any channel state information of the eavesdropper while performing an AF protocol at the relay. For a secrecy performance analysis, we analyze a secrecy outage probability of the proposed system in one-integral form and verify our analysis with the computer-based simulation.

Linear Precoding Technique for AF MIMO Relay Systems (증폭 후 재전송 MIMO 중계 시스템을 위한 선형 전처리 기법)

  • Yoo, Byung-Wook;Lee, Kyu-Ha;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.16-21
    • /
    • 2010
  • In this paper, the linear source and relay precoders are designed for AF MIMO relay systems. In order to minimize mean squared error (MSE) of received symbol vector, the source and relay precoders are proposed, and MMSE receiver which is suitable to those precoders is utilized at the destination node. As the optimal precoders for source and relay nodes are not represented in closed form and induced by iterative method, we suggest a simple precoder design scheme. Simulation results show that the performance of the proposed precoding scheme is comparable with that of optimal scheme and outperforms other relay precoding schemes. Moreover, in high SNR region, it is revealed that SNR between source and relay node is more influential than SNR between relay and destination node in terms of bit error rate.

Performance Analysis of Hybrid SIMO-RF/FSO Communication System with Fixed Gain AF Relay

  • Shi, Wenxiao;Kang, Kai;Wang, Zhuo;Liu, Wei
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.365-373
    • /
    • 2019
  • This paper investigates the performance of a hybrid single input multiple output radio frequency/free-space optics (SIMO-RF/FSO) communication system. Each SIMO-RF link is modeled as an independent and identically distributed (i.i.d.) Rayleigh distribution, while the FSO link follows a generalized $M{\acute{a}}laga$ (M) distribution. Considering the fixed gain amplify-and-forward (AF) relay and misalignment errors, novel expressions for the outage probability (OP), average bit error rate (ABER) and average capacity are derived. Numerical results show that atmospheric turbulence and misalignment errors can seriously impair the system performance, and the hybrid RF/FSO communication system using SIMO-RF links can greatly improve system performance. We also analyze system performance under different types of modulation schemes. Numerical results are verified by Monte Carlo simulations.

Joint Relay-and-Antenna Selection and Power Allocation for AF MIMO Two-way Relay Networks

  • Wang, xiaoxiang;Zhou, Jia;Wang, DongYu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1016-1033
    • /
    • 2016
  • In this paper, we present a joint relay-and-antenna selection and power allocation strategy for multiple-input multi-output (MIMO) amplify-and-forward (AF) two-way relay networks (TWRNs). In our approach, we select the best transmit and receive antennas at the two sources, a best relay and a best transmit and receive antenna at the selected relay based on maximizing the minimum of the end-to-end received signal-to-noise-ratios (SNRs) under a total transmit power constraints. We obtained the closed-form solution for the optimal power allocation firstly. Then with the optimal allocation solution we found, we can reduce the joint relay-and-antenna selection to a simpler problem. Besides, the overall outage probability is investigated and a tight closed-form approximation is derived, which provides a method to evaluate the outage performance easily and fast. Simulation results are presented to verify the analysis.

Capacity Analysis of an AF Relay Cooperative NOMA System Using MRC

  • Xie, Xianbin;Bi, Yan;Nie, Xi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4231-4245
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) is widely studied in both academia and industry due to its high spectral efficiency over orthogonal multiple access (OMA). To effectively improve spectrum efficiency, an amplify-and-forward (AF) cooperative NOMA system is proposed as well as a novel detection scheme is proposed, in which we first perform successive interference cancellation (SIC) twice at U1 for the two signals received from two time slots to remove interference from symbol 2, then two new signals apply max ratio combining (MRC). In addition, a closed-form upper bound approximation for the ergodic capacity of our proposed system is derived. Monte-Carlo simulations and numerical analysis illustrate that our proposed system has better ergodic capacity performance than the conventional cooperative NOMA system with decode-forward (DF) relay, the conventional cooperative NOMA system with AF relay and the proposed AF cooperative NOMA system in [16]. In addition, we can see that ergodic capacity of all NOMA cooperative systems increase with the increase of transmit SNR. Finally, simulations display that power allocation coefficients have little effect on ergodic capacity of all NOMA cooperative systems. This is due to this fact that ergodic capacity of two symbols can be complementary with changing of power allocation coefficients.

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

Performance Analysis And Optimization For AF Two-Way Relaying With Relay Selection Over Mixed Rician And Rayleigh Fading

  • Fan, Zhangjun;Guo, Daoxing;Zhang, Bangning;Zeng, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3275-3295
    • /
    • 2012
  • In this paper, we analyze the performance of an amplify-and-forward (AF) two-way relaying system, where two sources exchange information via the aid of an intermediate relay that is selected among multiple relays according to max-min criterion. We consider a practical scenario, where one source-relay link undergoes Rician fading, and the other source-relay link is subject to Rayleigh fading. To be specific, we derive a tight lower bound for the outage probability. From this lower bound, the asymptotic outage probability and average symbol error rate (SER) expressions are derived to gain insight into the system performance at high signal-to-noise ratio (SNR) region. Furthermore, we investigate the optimal power allocation (PA) with fixed relay location (RL), optimal RL with fixed PA and joint optimization of PA and RL to minimize the outage probability and average SER. The analytical expressions are verified through Monte Carlo simulations, where the positive impact of Rician factor on the system performance is also illustrated. Simulation results also validate the effectiveness of the proposed PA and relay positioning schemes.

Secrecy Outage Probability of AF Relay Transmission with MRC/TAS in Presence of Eavesdropper

  • Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.620-625
    • /
    • 2016
  • In this paper, we offer the secrecy outage probability of the amplify-and-forward (AF) transmission, which consists of one source, one destination, one relay, and one passive eavesdropper. Particularly, we consider that the relay is equipped with multiple antennas while other terminals is utilized with single antenna and apply diversity techniques (for both the reception and the transmission) at the relay to achieve gains in a secrecy outage performance. Additionally, we analyze the exact secrecy outage probability of the proposed systems in a one-integral form. Finally, some numerical examples are given to verify our provided analytical results for different system conditions.