• Title/Summary/Keyword: AERMOD model

Search Result 18, Processing Time 0.028 seconds

CALPUFF and AERMOD Dispersion Models for Estimating Odor Emissions from Industrial Complex Area Sources

  • Jeong, Sang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study assesses the dispersion and emission rates of odor form industrial area source. CALPUFF and AERMOD Gaussian models were used for predicting downwind odor concentration and calculating odor emission rates. The studied region was Seobu industrial complex in Korea. Odor samples were collected five days over a year period in 2006. In-site meteorological data (wind direction and wind speed) were used to predict concentration. The BOOT statistical examination software was used to analyze the data. Comparison between the predicted and field sampled downwind concentration using BOOT analysis indicates that the CALPUFF model prediction is a little better than AERMOD prediction for average downwind odor concentrations. Predicted concentrations of AERMOD model have a little larger scatter than that of CALPUFF model. The results also show odor emission rates of Seobu industrial complex area were an order of 10 smaller than that of beef cattle feed lots.

Estimation of Odor Emissions from Industrial Sources and Their Impact on Residential Areas using the AERMOD Dispersion Model (AERMOD 모델을 이용한 산단 지역 악취 배출량 및 주거지역 영향 범위 평가)

  • Jeong, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this study, the AERMOD dispersion model was used for predicting odor concentrations and back-calculating industrial area source odor emission rate. The studied area was Sihwa industrial complex in Korea. Odor samples were collected during two days over a year period in 2009. The comparison between the predicted and observed concentrations indicates that the AERMOD model could fairly well predict average downwind odor concentrations. The results show odor emission rates of Sihwa industrial complex area source were ranged from 0.204 to 2.320 $OUms^{-1}$ (average 0.476 $OUms^{-1}$). The results also show wind speed and direction are important parameters to the odor dispersion.

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (II) - Focusing on AERMOD Model Application Method - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(II) - AERMOD 모델 적용방법을 중심으로 -)

  • Suhyang Kim;Sunhwan Park;Hyunsoo Joo;Minseop So;Naehyun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.4
    • /
    • pp.203-213
    • /
    • 2023
  • The AERMOD model was the most used, accounting for 89.0%, based on the analysis of the environmental impact assessment reports published in the Environmental Impact Assessment Information Support System (EIASS) between 2021 and 2022. The mismatch of versions between AERMET and AERMOD was found to be 25.3%. There was the operational time discrepancy of 50.6% from industrial complexes, urban development projects between used in the model and applied in estimating pollutant emissions. The results of applying various versions of the AERMET and AERMOD models to both area sources and point sources in both simple and complex terrain in the Gunsan area showed similar values after AERMOD version 12 (15181). Emissions are assessed as 24-hour operation, and the predicted concentration in both simple and complex terrain when using the variable emission coefficient option that applies an 8-hour daytime operation in the model is lowered by 37.42% ~ 74.27% for area sources and by 32.06% ~ 54.45% for point sources. Therefore, to prevent the error in using the variable emission coefficient, it is required to clearly present the emission calculation process and provide a detailed explanation of the composition of modeling input data in the environmental impact assessment reports. Also, thorough reviews by special institutions are essential.

The Prediction and Evaluation Air Pollutants Concentration around Industrial Complex by using Atmospheric Dispersion Models -Based on ISCST3, FDM, AERMOD- (대기확산모델을 사용한 공단주변지역의 대기오염물질농도 예측 및 평가 -ISCST3, FDM, AERMOD를 중심으로-)

  • 이화운;원경미;배성정
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.485-490
    • /
    • 1999
  • We will calculate concentration of air pollutants using ISCST3, FDM and AERMOD of models recommended in U. S. EPA which are able to predict concentration of short term for point source, complex like industrial complex, power plant and burn-up institution. Before executing model, as analyzing computational result of many cases according to selecting of input data, we will increasing predictable ability of model in limit range of model. Especially, we analyzed three cases-case of considering various emission rate according to time scale and not, case considering effect of atmospheric pollution materials removed by physical process. In our study, after comparing and analyzing results of three model, we choose the atmospheric dispersion model reflected well the characteristic of the area. And we will investigate how large the complex pollutant sources such as industrial complex contribute to atmospheric environment and air quality of the surrounding the area as predicting and estimating chosen model.

  • PDF

Comparative Analysis of the CALPUFF and AERMOD Atmospheric Dispersion Models for Ready-Mixed Concrete Manufacturing Facilities Generating Particulate Matter (미세먼지 발생 레미콘시설에서의 대기확산모델 CALPUFF와 AERMOD 비교 분석)

  • Han, Jin-hee;Kim, Younghee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.267-278
    • /
    • 2021
  • Objectives: Using atmospheric dispersion representative models (AERMOD and CALPUFF), the emissions characteristics of each model were compared and analyzed in ready-mixed concrete manufacturing facilities that generate a large amount of particulate matter (PM-10, PM-2.5). Methods: The target facilities were the ready-mixed concrete manufacturing facilities (Siheung RMC, Goyang RMC, Ganggin RMC) and modeling for each facility was performed by dividing it into construction and operation times. The predicted points for each target facility were selected as 8-12ea (Siheung RMC 10, Goyang RMC 8, and Gangjin RMC 12ea) based on an area within a two-kilometer radius of each project district. The terrain input data was SRTM-3 (January-December 2019). The meteorological input data was divided into surface weather and upper layer weather data, and weather data near the same facility as the target facility was used. The predicted results were presented as a 24-hour average concentration and an annual average concentration. Results: First, overall, CALPUFF showed a tendency to predict higher concentrations than AERMOD. Second, there was almost no difference in the concentration between the two models in non-complex terrain such as in mountainous areas, but in complex terrain, CALPUFF predicted higher concentrations than AERMOD. This is believed to be because CALPUFF better reflected topographic characteristics. Third, both CALPUFF and AERMOD predicted lower concentrations during operation (85.2-99.7%) than during construction, and annual average concentrations (76.4-99.9%) lower than those at 24 hours. Fourth, in the ready-mixed concrete manufacturing facility, PM-10 concentration (about 40 ㎍/m3) was predicted to be higher than PM-2.5 (about 24 ㎍/m3). Conclusions: In complex terrain such as mountainous areas, CALPUFF predicted higher concentrations than AERMOD, which is thought to be because CALPUFF better reflected topographic characteristics. In the future, it is recommended that CALPUFF be used in complex terrain and AERMOD be used in other areas to save modeling time. In a ready-mixed concrete facility, PM-10, which has a relatively large particle size, is generated more than PM-2.5 due to the raw materials used and manufacturing characteristics.

A Study on Adequacy Assessment of Protective Action Distance in Hazardous Chemical Accident by AERMOD Modeling (AERMOD 모델링 분석을 통한 유해화학물질 누출사고 시 방호활동거리의 적정성 평가연구)

  • Lim, Chea-Hyun;Doh, Sang-Hyeun
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In Korea, The protective action distance based on Canada's ERG has been adopted for safety of residents in case of hazardous chemicals leakage accident. However, it couldn't respond properly on the accidents because of geographical and meteorological differences between two nations. In this study, It was found that the protective action distance varies depending on season and terrain, Through AERMOD modeling analysis for the petrochemical complex reflected local geographical data and meteorological conditions.

A Study on Prediction Model Conformity of Line Source in Urban Area (도시지역에서의 선오염원 예측모델 적합성에 관한 연구)

  • Kim, Jin Hong;Park, Sun hwan;Chang, Yoon young
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • Despite the limitations and difficulty in the application of CALINE3 model for air dispersion prediction of roads and tunnels construction businesses in South Korea, the model is being used in all roads construction projects. This study compared the predicted values of CALINE3 and AERMOD model that is suggested by the US EPA, to the values of GRAL model, a Lagrangian particle tracking model developed in Europe, by applying the models to the existing roads of the urban areas. The result showed low relevance to the actual measurement value in the case of CALINE3 model, thus displaying a low trusted value when applying to the urban areas. In the case of using AERMOD model, the predicted values were overly expressed compared to the actual measurement value, thus leading to the need of adding a No2 conversion method to the model in the future. In the case of GRAL model, a Lagrangian particle tracking model, the relevance between the actual and predicted values were high as the model considers the surrounding topography and the buildings all together, thus confirming that the model can be used for air dispersion prediction of the roads in the urban areas. Lastly, the result of this study testing the air prediction models in Jeongneung Measuring Station points that it is necessary for the future studies to expand the testing areas and test the validity of the models continuously.

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (I) - Focusing on AERMOD Meteorological Preprocessor - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(I) - AERMOD 기상 전처리를 중심으로 -)

  • Kim, Suhyang;Park, Sunhwan;Tak, Jongseok;Ha, Jongsik;Joo, Hyunsoo;Lee, Naehyun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.271-285
    • /
    • 2022
  • The AERMET, the AERMOD meteorological preprocessing program, mainly used for environmental impact assessment and Integrated Environmental Permit System (IEPS) in Korea, has not considered the land covers characterasitics, and used only the past meteorological data format CD-144. In this study, two results of AERMET application considering CD-144 format and ISHD format, being used internationally, were compared. Also, the atmospheric dispersion characteristics were analyzed with consideration of land cover. In the case of considered the CD-144 format, the actual wind speed was not taken into account in the weak wind (0.6~0.9m/s) and other wind speed due to the unit conversion problem. The predicted concentration considering land cover data was up to 387% larger depending on the topographic and emission conditions than without consideration of land cover. In conclusion, when using meteorological preprocessing program in AERMOD modelling, AERMET, with ISHD format, land cover characterasitics in the area should be considered.

A Case Study on the Health Impact Assessment of Residential Development Projects (주거지 개발사업에 대한 건강영향평가 사례 연구)

  • Shin, Moonshik;Dong, Jongin;Ha, Jongsik
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.391-402
    • /
    • 2020
  • Health Impact Assessment based on municipal law is performed and written in the sanitary and public health part in the current environmental impact assessment. Residential development projects such as housing site development etc., are not subject to health impact assessment under Article 13 of the Environmental Health Act. However, health impact assessment is conducted partially based on the review that health impact assessment targets which are identified among substances emitted from pollutants nearby industrial complexes should be assessed risk (including carcinogenic and non-carcinogenic) at the stage of the environmental impact assessment consultation. Although residential development projects do not have plans for pollutant emitting facilities that emit hazardous air pollutants, there is a possibility that residents might be affected by pollutants from industrial complex near residential area in the future. In this study, Health impact assessment was conducted to examine the impact on residents in planned areas by analyzing previous residential development projects. We predicted future impact by using the literature survey results on surrounding area (case1) and conducting contribution analysis (case2) and predicting exposure concentration of carcinogenic substances applying Atmospheric Diffusion Model (AERMOD). By this study, we concluded that applying on-site survey, contribution analysis and prediction of exposure concentration by using AERMOD complementarily will be effective to assess the health impact to the receptors by pollutants from industrial complexes near the planned zone.

A Study on the Impact Scope from Hazardous Chemicals Leakage in Jeju Area - Focused on hydrogen fluoride - (제주지역 유해화학물질 누출사고 시 영향범위에 관한 연구 - 불화수소 중심으로 -)

  • Lim, Chaehyun;Doh, Sang Hyeun;Kim, Changyoung
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.495-502
    • /
    • 2018
  • In this study, the AERMOD air diffusing model was used to estimate the range of influence of Hazardous chemicals (hydrogen fluoride) in case of small accidents in Jeju area. The impact scope were in the order of Seogwipo Fire Station, Dongbu Fire Station, Jeju Fire Station, and Seobu Fire Station. Seasonal orders were summer, spring, autumn and winter. The correlation between the meteorological factors shows a strong positive correlation with the wind speed of 0.998 and has a negative correlation with the temperature of -0.463. Through the linear regression analysis, we could estimate the equation of Impact scope = 13.922WS (Wind Speed) - 5.195 and the reliability ($R^2$) was as high as 0.995.