• Title/Summary/Keyword: AE sensor

Search Result 306, Processing Time 0.022 seconds

A Study on Real-time Monitoing of Tool Fracture in Turning (선삭공정시 공구파손의 실시간 검출에 관한 연구)

  • Park, D.K.;Chu, C.N.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.130-143
    • /
    • 1995
  • This paper presents a new methodology for on-line tool breadage detection by sensor fusion of an acoustic emission (AE) sensor and a built-in force sensor. A built-in piezoelectric force sensor, instead of a tool dynamometer, was used to measure the cutting force without altering the machine tool dynamics. The sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. A burst of AE signal was used as a triggering signal to inspect the cutting force. A sighificant drop of cutting force was utilized to detect tool breakage. The algorithm was implemented on a DSP board for in-process tool breakage detection. Experiental works showed an excellent monitoring capability of the proposed tool breakage detection system.

  • PDF

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Evaluation of Velocity and Source Locations of Acoustic Signals in PSC Beam (AE기법을 이용한 PSC보의 음파속도 및 음원위치 산정)

  • Youn, Seok-Goo;Kim, Eun-Keum;Choi, Min-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.330-333
    • /
    • 2006
  • In this paper experimental tests were performed to evaluate velocities of the acoustic waves through prestressed concrete beam and source locations using AE technique. Seven AE sensors are mounted on the surface of 5m length test beam with equal spacing and using Schmidt Hammer AE events are made 18 locations. The velocities of AE signals are evaluated using the time differences of arrival times and the distances between the AE source loactions and the AE sensor locations. In addition, using the Least Square Method, the AE source locations are re-evaluated reversely using both of the arrival times and the velocities of AE signals. Test results show the average velocity of the AE signals is about 4,000m/sec and the velocity decreased with the increase of the trevalling times due to the effect of attenuation. Based on the estimation of the source locations, it is observed that the accuracy of source location is increased when the velocity of each AE sensor used rather than the average velocity.

  • PDF

Sensitivity Properties of Acoustic Emission Sensor Using NKN System Ceramics (NKN계 세라믹을 이용한 음향방출 센서의 감도 특성)

  • Hong, Jae-Il;Shin, Sang-Hoon;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Sang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.696-701
    • /
    • 2014
  • In this study, in order to develop coupled vibration mode piezoelectric devices for Acoustic Emission (abbreviated as AE) sensor application with outstanding displacement and piezoelectric properties have been simulated by ATILA FEM program. And, From the results of ATILA simulation, the AE sensor specimen, obtained superior electromechanical coupling factor and displacement, when the size of specimen is $3.45mm{\Phi}{\times}3.45mm$ with ratio of diameter/thickness(${\Phi}/T$)= 1.0. Therefore, AE sensor was fabricated by (Na,K,Li)(Nb,Ta) $O_3$(abbreviated as NKL-NT) system piezoelectric ceramics using coupled vibration mode. The piezoelectric properties of NKL-NT ceramics was exhibited that piezoelectric constant($d_{33}$), piezoelectric voltage constant($g_{33}$) and electro mechanical coupling factor($k_p$) have the excellent values of 261[pC/N], 40.10[$10^{-3}Vm/N$], and 0.44, respectively. The manufactured piezoelectric device with ratio of ${\Phi}/T$= 1.0 indicated the optimum values of resonant frequency(fr)= 556.5[kHz], antiresonant frequency(fa)=631.1[kHz], and effective electromechanical coupling factor(keff)= 0.473. The maximum sensitivity of the coupled vibration mode AE sensor was 55[dB] at the resonant frequency of 75[kHz]. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application AE sensor piezoelectric device.

Development of Fiber-Optic AE Sensor for On-Line Monitoring System (광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발)

  • Nam, Jae-Yeong;Jeong, Jae-Hyeon;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.

Characterization of Magnetic Abrasive Finishing Using Sensor Fusion (센서 융합을 이용한 MAF 공정 특성 분석)

  • Kim, Seol-Bim;Ahn, Byoung-Woon;Lee, Seoung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.514-520
    • /
    • 2009
  • In configuring an automated polishing system, a monitoring scheme to estimate the surface roughness is necessary. In this study, a precision polishing process, magnetic abrasive finishing (MAF), along with an in-process monitoring setup was investigated. A magnetic tooling is connected to a CNC machining to polish the surface of stavax(S136) die steel workpieces. During finishing experiments, both AE signals and force signals were sampled and analysed. The finishing results show that MAF has nano scale finishing capability (upto 8nm in surface roughness) and the sensor signals have strong correlations with the parameters such as gap between the tool and workpiece, feed rate and abrasive size. In addition, the signals were utilized as the input parameters of artificial neural networks to predict generated surface roughness. Among the three networks constructed -AE rms input, force input, AE+force input- the ANN with sensor fusion (AE+force) produced most stable results. From above, it has been shown that the proposed sensor fusion scheme is appropriate for the monitoring and prediction of the nano scale precision finishing process.

Trajectory of Resonant Displacement of Coupled Vibration Mode Piezoelectric Devices for AE Sensor Application (음향방출 센서 응용을 위한 결합진동 모드 압전소자의 공진 변위 궤적)

  • Jeong, Yeong-Ho;Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • In this study, coupled mode piezoelectric devices for AE sensor application with excellent displacement and piezoelectric characteristics were simulated using ATILA FEM program, and then fabricated. Displacements and electromechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor were obtained when the ratio of diameter/thickness was 1.0. The piezoelectric device of ${\Phi}/T$= 1.0 exhibited the optimum values of fr= 406 kHz, displacement= $6.11{\times}10^{-8}[m]$, $k_{eff}$= 0.648. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

Analysis of Acoustic Emission Signal Sensitivity to Variations in Thin-film Material Properties During CMP Process (CMP 공정중 박막 종류에 따른 AE 신호 분석)

  • Park, Sun Joon;Lee, Hyun Seop;Jeong, Hae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.863-867
    • /
    • 2014
  • In this study, an acoustic emission (AE) sensor was used for measuring the abrasive and molecular-scale phenomena in chemical mechanical polishing (CMP). An AE sensor is a transducer that converts a mechanical wave into an electrical signal, and is capable of acquiring high-level frequencies from materials. Therefore, an AE sensor was installed in the CMP equipment and the signals were measured simultaneously during the polishing process. In this study, an AE monitoring system was developed for investigating the sensitivity of the AE signal to (a) the variations in the material properties of the pad, slurry, and wafer and (b) the change in conditions during the CMP process. This system was adapted to Oxide and Cu CMP processes. AE signal parameters including AE raw frequency, FFT, and amplitude were analyzed for understanding the abrasive and molecular-level phenomena in the CMP process. Finally, we verified that AE sensors with different bandwidths could function in complementary ways during CMP process monitoring.

Detection of Ultrasonic Characteristics of Oil Corona by Wide-Band AE Sensor (광대역 AE 센서에 의한 유중코로나의 초음파 특성)

  • Kim, In-Sik;Lee, Sang-U;Lee, Dong-In;Lee, Gwang-Sik;Kim, Lee-Guk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • In this paper, using a wide-band AE sensor with the frequency range from 100[kHz] to 1.5[kHz], the frequency spectra of AE signals generated from the corona discharges of the needle-plane gap and from the partial discharges of an epoxy void were analyzed to determine the proper ultrasonic sensor with optimum frequency range according to the patterns of corona discharges. We also examined the propagation characteristics of AE signals in oil and the relationship between the magnitude of corona discharge and the magnitude of AE signals in peak-to-peak value under the application of 60[Hz] ac high-voltage. From these results, the main frequency spectra of AE signals emitted from the corona discharges of the needle-plane gap were about 130[kHz] by the fast fourier transform, but the main frequency spectra appeared to be 230[kHz] in the partial discharges of an epoxy void. The magnitude of AE signals was proportional to the magnitude of corona discharge and discharge current pulse with increasing the applied voltages.

  • PDF

Sensitivity Characteristics of Acoustic Emission(AE) Sensor using the Lead-free (Na1,K)NbO3 Ceramics (무연 (Na1,K)NbO3 계 세라믹스를 이용한 AE센서의 감도특성)

  • Yoo, Ju-Hyun;Lee, Gab-Soo;Hong, Jae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.218-222
    • /
    • 2007
  • In this study, Acoustic emission(AE) sensors were fabricated using lead-free piezoelectric ceramics for prohibiting environmental pollution. Structure of AE sensors were designed as Langvin type air backing form. Here, the piezoelectic element was used as PZT(EC-65)(AE1) and NKN(AE2), respectively. The measured resonant frequency, the maximum sensitivity frequency and sensitivity of AE sensors were as follows ; 143 kHz, 29.4 kHz and 69.3 dB in AE1 and 179 kHz, 29.4 kHz and 66.3dB in AE2, respectively.