• Title/Summary/Keyword: AE sensor

Search Result 306, Processing Time 0.029 seconds

Nozzle Condition Monitoring System for Abrasive Waterjet Process (연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계)

  • Kim, Jeong-Uk;Kim, Roh-Won;Kim, Chul-Min;Kim, Sung-Ryul;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

DNA 템플릿을 활용한 전이금속 칼코겐화합물 트랜지스터 기반 바이오센서 연구

  • O, Ae-Ri;Gang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.213.1-213.1
    • /
    • 2015
  • Field effect transistors (FETs)를 기반으로 한 바이오센서는 빠른 응답속도, 저비용, label-free 등을 이유로 각광받고 있다. 그러나 3D 구조를 기반으로 한 FETs 바이오센서의 낮은 sensitivity의 한계점을 지니며, 이를 극복하기 위해 1D 구조의 나노튜브 등을 활용하였으나 여전히 높은 sensitivity의 확보는 힘들다. 최근에는 이러한 문제점을 극복하기 위해 이차원 반도체 물질 중 하나인 Transition metal dichalcogenide (TMD)를 이용하여, 700 이상의 sensitivity를 지니는 pH센서 및 100 이상의 sensitivity를 지니는 바이오센서가 보고되었다. 하지만 이보다 더 높은 정확성 및 반응성을 높이기 위한 연구는 부족한 실정이다. 우리는 DNA 템플릿을 이용하여, TMD FET 기반 pH 및 바이오센서의 반응성을 극대화시키는 연구를 선보인다. DNA는 7~8정도의 유전상수 (K)를 가지는 물질로 기존 $SiO_2$(K=3.9)보다 높은 유전상수를 가지며 두께를 0.7 nm로 매우 얇게 형성할 수 있는 장점이 있다. 이는 FET 기반 바이오센서의 표면 캐패시턴스를 높여 sensitivity를 극대화할 수 있으며, 기존에 사용된 high-k 기반 바이오센서와 비교하여도 약 10배 이상의 sensitivity 향상을 노릴 수 있다. 또한, TMD 물질로 우리는 $WSe_2$를 선택하였으며, pH 용액의 receptor로써 우리는 3-Aminopropyltriethoxysilane (APTES)를 활용하였고, 템플릿으로 사용된 DNA는 DX tile 및 Ring type의 두 가지를 사용하였다. 추가로, DNA의 phosphate backbone을 중성화시키고 DNA의 base pairing의 charge 안정화를 위해 구리 이온($Cu^{2+}$) 및 란타넘족($Tb^{3+}$)을 추가하였다. 완성된 바이오센서의 pH 센싱을 위해 우리는 pH 6,7,8의 표준 용액을 사용하였으며, 재현성 및 반복성의 확인하였다.

  • PDF

Condition Monitoring System of Wind Turbine (풍력발전기를 위한 상태 모니터링 기술)

  • Hameed, Z.;Hong, Y.S.;Ahn, S.H.;Cho, Y.M.;Song, C.K.;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.395-399
    • /
    • 2007
  • Renewable energy sources such as wind energy is copiously available without any limitation. Wind turbines are used to tap the potential of wind energy which is available in millions of megawatt. Reliability of wind turbine is critical to extract this maximum amount of energy from the wind. We reviewed different techniques, methodologies, and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns. To keep the wind turbine in operation, implementation of Condition Monitoring System (CMS) is paramount, and for this purpose ample knowledge of these types of system is mandatory. So, an attempt has been made in this direction to review maximum approaches related to CMS in this piece of writing.

  • PDF

Rock bolt integrity evaluation using reflected and transmitted guided ultrasonic waves (유도초음파의 반사법과 투과법 비교를 통한 록볼트 건전도 평가)

  • Lee, Jong-Sub;Yu, Jung-Doung;Han, Shin-In;Bae, Myeong-Ho;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.42-50
    • /
    • 2008
  • To evaluate rock bolt integrity, destructive test such as pull-out test has been commonly carried out. This method is known as time consuming, expensive, and inaccurate procedure. To improve destructive method, non-destructive techniques using transmitted guided ultrasonic waves were suggested. Note for the transmission method, the source for the generation of ultrasonic waves should be installed during the rock bolt construction. The purpose of this study is to investigate the reflection method using reflected guided ultrasonic waves to evaluate the integrity of the rock bolt grouted, and to compare the results evaluated by the reflection and transmission methods. The guided waves are generated by PZT element and received by AE sensor. The measured signals are analyzed by the wavelet transform. The results show that the energy velocities of guided ultrasonic waves increase with the defect ratio in both transmission and reflection method. The reflection method produces the lower velocity in all defect ratio. This research demonstrates that the reflection method may be suitable and easer method for the field tests.

  • PDF

Development of Liquid Metal Strain Gauge for Measuring WT Blade's Deformation (풍력발전기 블레이드 변형 측정을 위한 액체금속 스트레인 게이지 개발)

  • Park, In Kyum;Seo, Youngho;Kim, Byeong Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.307-314
    • /
    • 2015
  • In this paper, the embedding type novel liquid metal strain gauge was developed for measuring the deformation of wind turbine blades. In general, the conventional methods for the SHM have many disadvantages such as frequency distortion in FBG sensors, the low gauge factor and mechanical failures in strain gauges and extremely sophisticated filtering in AE sensors. However, the liquid metal filled in a pre-confined micro channel shows dramatic characteristics such as high sensitivity, flexibility and robustnes! s to environment. To adopt such a high feasibility of the liquid metal in flexible sensor applications, the EGaIn was introduced to make flexible liquid metal strain gauges for the SHM. A micro channeled flexible film fabricated by the several MEMS processes and the PDMS replication was filled with EGaIn and wire-connected. Lots of experiments were conducted to investigate the performance of the developed strain gauges and verify the feasibility to the actual wind turbine blades health monitoring.

Investigation of Machined-Surface Condition and Machining Deformation in High-Speed Milling of Thin-Wall Aluminum 7075-T651 (알루미늄 합금(Al7075-T651)의 얇은 벽 고속밀링 가공 시 가공표면 상태와 가공변형 특성)

  • Koo, Joon-Young;Hwang, Moon-Chang;Lee, Jong-Hwan;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • Al alloys are useful materials having high specific strength and are used in machining of parts having thin-walled structures for weight reduction in aircraft, automobiles, and portable devices. In machining of thin-walled structures, it is difficult to maintain dimensional accuracy because machining deformation occurs because of cutting forces and heat in the cutting zone. Thus, cutting conditions and methods need to be investigated and cutting signals need to be analyzed to diagnose and minimize machining deformation and thereby enhance machining quality. In this study, an investigation on cutting conditions to minimize machining deformation and an analysis on characteristics of cutting signals when machining deformation occurs are conducted. Cutting signals for the process are acquired by using an accelerometer and acoustic emission (AE) sensor. Signal characteristics according to the cutting conditions and the relation between machining deformation and cutting signals are analyzed.

Smart phone Application Development for Aware of Unexpected Conditions using Accelerometer Sensors (스마트폰 가속도 센서 기반의 돌발 상황인식 어플리케이션 개발)

  • Cha, Kyung-Ae;Yeo, SunDong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • A Smart phone is the one of the mobile devices widely used in our daily life. Moreover, various type of sensing data gathering from smart phone are effectively applicable to recognize of their users or smart phone status. Therefore, many smart phone applications based on sensor data have been actively developed. In this paper, we investigate an unexpected conditions recognition method using continuous sensing data from a single three-axis accelerometer. In addition, we implemented an application using the proposed method which provides the services notifying an abrupt changes of the smart phone conditions. By the experimented results, the application can be useful to protect the smart phone on the user's unaware conditions such as falling or a robbery case.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.

Evaluation of Antibody Immobilization Methods for Detection of Salmonella using Impedimetric Biosensor (살모넬라균 검출을 위한 임피던스 바이오센서의 항체 고정화 방법 평가)

  • Kim, Gi-Young;Moon, Ji-Hea;Om, Ae-Son;Yang, Gil-Mo;Moh, Chang-Yeon;Kang, Suk-Won;Cho, Han-Keun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.254-259
    • /
    • 2009
  • Conventional methods for pathogen detection and identification are labor-intensive and take several days to complete. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella typhimurium. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on either avidin-biotin binding or self assembled monolayer (SAM) on the surface of the IME to form an active sensing layer. To evaluate effect of antibody immobilization methods on sensitivity of the sensor, detection limit of the biosensor was analyzed with Salmonella samples innoculated in phosphate buffered saline (PBS) or food extract. The impedimetric biosensor based on SAM immobilization method produced better detection limit. The biosensor could detect 107 CFU/mL of Salmonella in pork meat extract. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

Rapid Detection of Salmonella enteritidis in Pork Samples with Impedimetric Biosensor: Effect of Electrode Spacing on Sensitivity

  • Kim, Gi-Young;Moon, Ji-Hea;Hahm, Bung-Kwon;Morgan, Mark;Bhunia, Arun;Om, Ae-Son
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2009
  • Frequent outbreaks of foodborne illness have been increasing the awareness of food safety. Conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Some immunological, rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella entritidis in food sample. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using a semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on neutravidin-biotin binding on the surface of the IME to form an active sensing layer. To evaluate the effect of electrode gap on sensitivity of the sensor, 3 types of sensors with different electrode gap sizes (2, 5, and $10{\mu}m$) were fabricated and tested. The impedimetric biosensor could detect $10^3\;CFU/mL$ of Salmonella in pork meat extract with an incubation time of 5 min. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.