• Title/Summary/Keyword: AE:Acoustic Emission

Search Result 825, Processing Time 0.02 seconds

Signal Acquisition for Effective Prediction of Chatter Vibration in Milling Processes (밀링가공에서 효과적인 채터진동 판별을 위한 신호 획득)

  • Jo, M.H.;Kim, H.;Koo, J.Y.;Lee, J.H.;Kim, Jeong Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.325-329
    • /
    • 2014
  • This paper proposes a method to predict chatter vibration generated in milling processes and to enhance machining quality and surface finish. Chatter vibration is a common problem in the milling of thin walls and floors. It causes a poor surface finish, or even marks, to appear on the final machined surface. Therefore, an effective method is necessary to predict chatter vibration in machine tools. In this investigation, chatter vibration is measured by an accelerometer, microphone, and Acoustic Emission (AE) sensor in a machining operation. Based on the results of the experiment, a microphone can be applied for the prediction of chatter vibration in milling processes.

Influence of Illumination on Domain Switching and Photovoltaic Current in Poled $(Pb_{1x}La_x)TiO_3$ Freeoelectric Ceramics

  • Park, Si-Kyung;Park, Dong-Gu;Kim, Sung-Ryul
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.267-271
    • /
    • 2000
  • The influence of photoexcited nonequilibrium carriers on domain switching and photovoltaic current was investigated in two kinds of poled La-modified PbTiO$_3$ferroelectric ceramics, (Pb$_{0.85}$La$_{0.15}$)TiO$_3$and (Pb$_{0.76}$La$_{0.24}$)TiO$_3$, under illumination in the absence of external electric field. Both photovoltaic current and cumulative AE event counts increased with illumination time. The observed nonsteady-state photovoltaic current could be explained on the basis of the cycles of a series of physical events consisting the establishment of space charge field by photoexcited carriers trapped at the grain boundaries, the photoinduced domain switching, and the increase in the remanent polarization. An analysis of energy distribution of the observed AE signals also revealed that the space charge field in (Pb$_{0.85}$La$_{0.15}$)TiO$_3$allowed both 18$0^{\circ}C$ and 90$^{\circ}$domains to be switched during illumination.

  • PDF

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

Effects of water saturation time on energy dissipation and burst propensity of coal specimens

  • Yang, Xiaohan;Ren, Ting;Tan, Lihai;Remennikov, Alex
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Water infusion has long been taken as an effective way to eliminate coal burst risk as coal properties can be loosen and soften by water infusion. However, not all industrial trials of water infusion for coal burst prevention have been necessarily effective in all situations as the effectiveness of this method can be affected by water infusion time, coal properties and the parameters of water injection. Hence, some fundamental issues including the effects of water infusion time on burst propensity and energy evolution need to be further discussed. In this paper, four groups of coal specimens with 0 day, 5 days, 10 days, and 15 days water saturation time are tested under uniaxial compression load with the application of AE monitoring. To comprehensively compare the burst behavior of coal specimens under different water saturation time, stress-strain curves, AE counts, fragmentation characteristics and burst propensity of these groups are analyzed. It was found by this research that sufficient water saturation can mitigate the burst behavior of coal samples while insufficient water infusion might cannot reach the burst mitigation aims.

AE Characteristics of Fatigue Crack Opening and Closure in Structural Aluminum Alloy (구조용 알루미늄 합금에서의 피로균열 열림 및 닫힘 시 AE 발생특성 연구)

  • Jeong, Jung-Chae;Park, Phi-Lip;Kim, Ki-Bok;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.155-169
    • /
    • 2002
  • The objective of this study was to investigate the effect of crack opening and closure in the AE activities during fatigue test. Laboratory experiment using various materials and test conditions were carried out to identify AE characteristics of fatigue crack propagation. Compact tension specimens of 2024-T4 and 6061-T6 aluminum alloy were prepared for fatigue test. AE activities were analyzed based on the phase of the loading cycle. Generally, most of AE were generated when the crack begins' opening and the crack closes fully, whereas a few in the pull opening of the crack. Also AE activity in the peak loading of cycle was different with each specimen. However, in the same material, AE activity was not affected by the change of cyclic frequency (0.1, 0.2, 1.0Hz). It was found that AE activities during crack opening and closure depend on material properties such as micro-structure, tensile strength and yield strength.

Location Estimation Method of Steam Leak in Pipelines Using Leakage Area Analysis (누설영역 분석을 이용한 배관 증기누설 위치 추정 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.384-390
    • /
    • 2016
  • It is important to have a pipeline leak-detection system that determines the presence of a leak and quickly identifies its location. Current leak detection methods use a acoustic emission sensors, microphone arrays, and camera images. Recently, many researchers have been focusing on using cameras for detecting leaks. The advantage of this method is that it can survey a wide area and monitor a pipeline over a long distance. However, conventional methods using camera monitoring are unable to target an exact leak location. In this paper, we propose a method of detecting leak locations using leak-detection results combined with multi-frame analysis. The proposed method is verified by experiment.

Characteristics of the Progressive Brittle Failure around Circular Opening by Scaled Model Test and Discrete Element Analysis (축소 모형시험과 개별 요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구)

  • Jeon Seok-Won;Park Eui-Seob;Bae Seong-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.250-263
    • /
    • 2005
  • Progressive and localized brittle failures around an excavated opening by the overstressed condition can act as a serious obstacle to ensure the stability and the economical efficiency of construction work. In this paper, the characteristics of the brittle failure around an circular opening with stress level was studied by the biaxial compressive test using sealed specimen and by the numerical simulation with $PFC^{2D}$, one of the discrete element codes. The occurring pattern and shape of the brittle failure around a circular opening monitored during the biaxial loading were well coincided with those of the stress induced failures around the excavated openings observed in the brittle rock masses. The crack development stages with stress level were evaluated by the detailed analysis on the acoustic emission event properties. The microcrack development process around a circular opening was successfully visualized by the particle flow analysis. It indicated that the scaled test had a good feasibility in understanding the mechanism of the brittle failure around an opening with a high reliability.

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

Steam Leak Detection Method in a Pipeline Using Histogram Analysis (히스토그램 분석을 이용한 배관 증기누설 검출 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Chae, Gyung-Sun;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.307-313
    • /
    • 2015
  • Leak detection in a pipeline usually involves acoustic emission sensors such as contact type sensors. These contact type sensors pose difficulties for installation and cannot operate in areas having high temperature and radiation. Therefore, recently, many researchers have studied the leak detection phenomenon by using a camera. Leak detection by using a camera has the advantages of long distance monitoring and wide area surveillance. However, the conventional leak detection method by using difference images often mistakes the vibration of a structure for a leak. In this paper, we propose a method for steam leakage detection by using the moving average of difference images and histogram analysis. The proposed method can separate the leakage and the vibration of a structure. The working performance of the proposed method is verified by comparing with experimental results.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.