• Title/Summary/Keyword: ADME/T

Search Result 5, Processing Time 0.02 seconds

Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method (SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발)

  • Gang, Sin-Moon;Kim, Han-Jo;Oh, Won-Seok;Kim, Sun-Young;No, Kyoung-Tai;Nam, Ky-Youb
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.653-662
    • /
    • 2009
  • Developing effective tools for predicting absorption, distribution, metabolism, excretion properties and toxicity (ADME/T) of new chemical entities in the early stage of drug design is one of the most important tasks in drug discovery and development today. As one of these attempts, support vector machines (SVM) has recently been exploited for the prediction of ADME/T related properties. However, two problems in SVM modeling, i.e. feature selection and parameters setting, are still far from solved. The two problems have been shown to be crucial to the efficiency and accuracy of SVM classification. In particular, the feature selection and optimal SVM parameters setting influence each other, which indicates that they should be dealt with simultaneously. In this account, we present an integrated practical solution, in which genetic-based algorithm (GA) is used for feature selection and grid search (GS) method for parameters optimization. hERG ion-channel inhibitor classification models of ADME/T related properties has been built for assessing and testing the proposed GA-GS-SVM. We generated 6 different models that are 3 different single models and 3 different ensemble models using training set - 1891 compounds and validated with external test set - 175 compounds. We compared single model with ensemble model to solve data imbalance problems. It was able to improve accuracy of prediction to use ensemble model.

Phytocompounds from T. conoides identified for targeting JNK2 protein in breast cancer

  • Sruthy, Sathish;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.153-161
    • /
    • 2022
  • c-Jun N-terminal kinases (JNKs) are members of MAPK family. Many genes can relay signals that promote inflammation, cell proliferation, or cell death which causes several diseases have been associated to mutations in the JNK gene family. The JNK2 gene is significantly more important in cancer development than the JNK1 and JNK3 genes. There are several different ways in which JNK2 contributes to breast cancer, and one of these is through its role in cell migration. As a result, this study's primary objective was to employ computational strategies to identify promising leads that potentially target the JNK2 protein in a strategy to alleviate breast cancer. We have derived these anticancer compounds from marine brown seaweed called Turbinaria conoides. We have identified compounds Ethane, 1, 1-diethoxy- and Butane, 2-ethoxy as promising anti-cancer drugs by molecular docking, DFT, and ADME study.

신규 항암제 DA-125의 ADME 연구

  • 이명걸;윤은정;심현주
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.133-133
    • /
    • 1993
  • DA-125의 rat blood중 분해반감기는 4.28분으로, DA-125는 정맥 투여후 신속히 M1으로 분해되었으며, DA-125는 투여 10분 후부터 검출되지 않았다. Mouse에 25mg/kg 정맥주사 한 후의 M1의 phamacokinetic parameter는 terminal t$\frac{1}{2}$ 344분, MRT 371분, Vss 25.7 $\ell$/kg, CL$_{total}$ 69.3 ml/min/kg이었으며 투여 2hr후에 M1및 대사체가 폐, 위, 신장등에는 다량 존재하였으나 심장에서는 검출되지 않았다. Rat에 10 mg/kg 정맥주사한 후의 혈장농도는 terminal phase에 도달하지 못하고 혈장농도가 변동을 나타내었다. 담즙으로의 배설은 주로 M2의 형태로 이루어졌으며 M1이 소량 차지하고 M3와 M4는 검출되지 않았다. DA-125는 rat 및 mouse liver homogenate에 의해 대사되어 FT-ADM(M1) ,13-dihy-dro FT-ADM(M2), 7-deoxy-adriamycinone(M3) 및 7-deoxy-13-dihydro adriamyci-none(M4)를 형성하였다. DA-125는 혐기, 호기 및 보효소, 종차에 관계얼이 반응개시 30분후에 약 90%가 분해되었으나 각 대사체의 생성여부 및 속도는 조건에 따라 변화하였다.

  • PDF

In Silico Analysis of Potential Antidiabetic Phytochemicals from Matricaria chamomilla L. against PTP1B and Aldose Reductase for Type 2 Diabetes Mellitus and its Complications

  • Hariftyani, Arisvia Sukma;Kurniawati, Lady Aqnes;Khaerunnisa, Siti;Veterini, Anna Surgean;Setiawati, Yuani;Awaluddin, Rizki
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.99-114
    • /
    • 2021
  • Type 2 diabetes mellitus (T2DM) and its complications are important noncommunicable diseases with high mortality rates. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase inhibitors are recently approached and advanced for T2DM and its complications therapy. Matricaria chamomilla L. is acknowledged as a worldwide medicinal herb that has many beneficial health effects as well as antidiabetic effects. Our research was designed to determine the most potential antidiabetic phytochemicals from M. chamomilla employing in silico study. 142 phytochemicals were obtained from the databases. The first screening employed iGEMdock and Swiss ADME, involving 93 phytochemicals. Finally, 30 best phytochemicals were docked. Molecular docking and visualization analysis were performed using Avogadro, AutoDock 4.2., and Biovia Discovery Studio 2016. Molecular docking results demonstrate that ligand-protein interaction's binding affinities were -5.16 to -7.54 kcal/mol and -5.30 to -12.10 kcal/mol for PTP1B and aldose reductase protein targets respectively. In silico results demonstrate that M. chamomilla has potential antidiabetic phytochemical compounds for T2DM and its complications. We recommended anthecotulide, quercetin, chlorogenic acid, luteolin, and catechin as antidiabetic agents due to their binding affinities against both PTP1B and aldose reductase protein. Those phytochemicals' significant efficacy and potential as antidiabetic must be investigated in further advanced research.

In silico Prediction and In vitro Screening of Biological Activities and Pharmacokinetics for the Major Compounds in Chong Myung Tang (가상 검색 및 시험관 시험을 이용한 총명탕 중 주성분들에 대한 약물작용 및 대사 예측)

  • Kwon, Young-Ee
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.463-468
    • /
    • 2007
  • Chong Myung Tang is consisted of three medicinal herbs (Acori Graminei Rhizoma, Polygalae Radix and Hoelen cum Radix). It has been used as a medicine for the purpose of learning and memory improvement. In this paper, Chong Myung Tang was screened the biological activities for Alzheimer's disease. The extract (70% ethanol) of Acari Graminei Rhizoma (1 mg/ml) showed that acetylcholinesterase (AChE) and amyloid beta ($A{\beta}$) peptide aggregation inhibitory potency are 43.1% and 76.5%, respectively. The extract of Polygalae Radix showed inhibitory activity against $A{\beta}_{1-42}$ peptide aggregation (51.5%). To predict the drug-likeness, oral absorption ability; blood-brain barrier (BBB) penetraion rate, mutagenecity and carcinogenicity; in silico screening was performed against 16 compounds in the three medicinal herbs. According to the results, all compounds have appropriate chemical structures as medicines. The six compounds in Acori Graminei Rhizoma and the five compounds in Hoelen cum Radix showed excellent oral absorption rate and BBB penetration rate. The four compounds in Polygalae Radix showed excellent oral absorption rate, but their BBB penetration was presented low rate. And, the extract of Hoelen cum Radix didn't show AChE and $A{\beta}_{1-42}$ peptide aggregation inhibitory activities in vitro. Therefore, their activity in brain may be other mechanism. According to all of the results, in silico prediction technology is convenient and effective to determine biological active compounds in medicinal herbs.