• Title/Summary/Keyword: AD5933

Search Result 6, Processing Time 0.02 seconds

Assessment of the Relationship between Sella Turcica Morphology and Delayed Dental Age (안장(Sella turcica)의 형태와 지연된 치령의 연관성 평가)

  • Soojin, Choi;Jihyun, Song
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.241-252
    • /
    • 2022
  • The purpose of this study was to evaluate the relationship between sella turcica morphology and delayed dental age. In total, 389 participants under 16 years old were selected. Dental age was evaluated by the Demirjian method and age discrepancy (AD), the value subtracted from dental age to chronological age, was calculated. The participants were divided into 8 groups based on the sella turcica type. Bridging ratio (BR) was defined as interclinoid distance divided by sella turcica length to determine the degree of sella turcica bridging (STB) and the participants were classified into 4 groups by BR. The data were statistically analyzed using the Kruskal Wallis test and the Mann Whitney test. Some groups with sella turcica abnormality showed lower AD than that of the normal group and the AD differences varied from 4 months to 1.3 year. As the STB severity increased, AD decreased. AD differences varied from 7 months to 1.19 year. No distinct differences were observed in sella turcica type and STB groups according to sex. The results indicate that sella turcica morphology is associated with delayed dental age. Sella turcica can be used as a supplementary indicator to predict dental development.

Wireless Impedance-Based SUM for Bolted Connections via Multiple PZT-Interfaces

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.246-259
    • /
    • 2011
  • This study presents a structural health monitoring (SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint.

Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

  • Park, Seung-Hee;Yun, Chung-Bang;Inman, Daniel J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.217-223
    • /
    • 2007
  • This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure.

Performance evaluation of EMI interface and multi-channel wireless impedance sensor node for bolted connection monitoring (볼트 연결부 모니터링을 위한 다채널 무선 임피런스 센서노트와 EMI 인터페이스의 성능 분석)

  • Nguyen, Khac-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.36-39
    • /
    • 2011
  • In this paper, performance of EMI interface and multi-channel wireless impedance sensor node is evaluated for SHM on bolted connection. To achieve the objective, following approaches are implemented. Firstly, an interface washer is designed to monitor loosened bolt through the variation in EMI of interface washer due to change in preload in bolt. Secondly, a multi-channel wireless impedance sensor node based on Imote2 platform is designed for automated and cost-efficient impedance-based SHM on bolted connections. Finally, performance of the multi-channel wireless impedance sensor node and the interface washer are experimentally validated for a lab-scale bolted connection model. A damage monitoring method using RMSD index of EMI signatures is utilized to examine the strength of each individual bolted connection.

  • PDF

Effect of Nano-filled Protective Coating on Microhardness and Wear Resistance of Glass-ionomer Cements (나노필러가 함유된 표면보호재가 글라스 아이오노머 시멘트의 미세경도와 마모저항성에 미치는 효과)

  • Ryu, Wonjeong;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.226-232
    • /
    • 2019
  • The purpose of this study was to investigate the effect of adding a protective coating on the microhardness and wear resistance of glass ionomer cements (GICs). Specimens were prepared from GIC and resin-modified GIC (RMGI), and divided into 3 groups based on surface protection: (1) no coating (NC), (2) Equia coat coating (EC), and (3) un-filled adhesive coating (AD). All specimens were then placed in distilled water for 24 h. Surface hardness (n = 10) was evaluated on a Vickers hardness testing machine. Wear resistance (n = 10) was evaluated after subjecting the specimen to thermocycling for 10,000 cycles using a chewing simulator. Data were analyzed using a one-way ANOVA and the Kruskal-Wallis test. Surface hardness was highest in the NC groups, followed by the EC and AD groups. The wear depth of GI + NC was significantly higher than that of all RMGI groups. EC did not significantly lower the wear depth compared to AD. Based on these results, it was concluded that although EC does not increase the surface microhardness of GIC, it can increase the wear resistance.

EFFECTS OF MOUTH BREATHING ON FACIAL SKELETAL MORPHOLOGY (구호흡이 안모골격 형태에 미치는 영향)

  • Lee, Min-Jeong;Kim, Jae-Gon;Yang, Yeon-Mi;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.4
    • /
    • pp.339-347
    • /
    • 2012
  • There still remains a controversial debate whether facial skeletal morphological differences exist between patients with nasal and mouth breathing habits. The aim of this study is to assess a relationship between over a period of time mouth breathing and facial skeletal morphology by analyzing lateral cephalometric radiographs of patients with nasal or mouth breathing habits. A total of 120 patients with skeletal class I, II, and III, who had undergone orthodontic diagnosis in department of pediatric dentistry - chonbuk national university, were chosen and their lateral cephalometric radiographs were analyzed. These patients were divided into six groups of 20, each with or without mouth breathing habits. The result of this study has not showed noticeable differences in cephalometric measurements between nasal and mouth breathing children of skeletal class I, II, and III (p > 0.05). However, when the groups were divided by age factor, mouth breathers of age 12 and older showed significant differences in cephalometrics such as decreased ramus height, maxillary retrusion, and clockwise pattern of mandible than children under age 12 (p < 0.05). In conclusion, a longer period of mouth-breathing habits in children displayed a greater chance of impaired facial growth.