• Title/Summary/Keyword: ACI 318-14

Search Result 47, Processing Time 0.024 seconds

Shear Behavior of Post-tensioning PSC Beams with High Strength Shear Reinforcement (고강도 전단보강철근을 사용한 포스트텐션 프리스트레스트 콘크리트 보의 전단거동 평가)

  • Jun, Byung-Koo;Lee, Jea-Man;Lim, Hye-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • The KCI-12 and ACI 318-14 design codes limit the maximum yield strength of shear reinforcement to prevent concrete compressive crushing before the yielding of shear reinforcement. The maximum yield strength of shear reinforcement is limited to 420 MPa in the ACI 318-14 design code, while limited to 500 MPa in the KCI-12 design code. A total of eight post-tensioning prestressed concrete beams with high strength shear reinforcement were tested to observe the shear behavior of PSC beams and the applicability of the high strength reinforcement was thus assessed. In the all PSC beam specimens that used stirrups greater than maximum yield strength of shear reinforcement required by the ACI 318-14 design code, the shear reinforcement reached their yield strains. The observed shear strength of tested eight PSC beams was greater than the calculated ones by the KCI-12 design codes. In addition, the diagonal crack width of all specimens at the service load was smaller than the crack width required by the ACI 224 committee. The experimental and analytical results indicate that the limitation on the yield strength of shear reinforcement in the ACI 318-14 design code is somewhat under-estimated and needs to be increased for high strength concrete. Also the application of high strength materials to PSC is available with respect to strength and serviceability.

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

Flexural tests on two-span unbonded post-tensioned lightweight concrete beams

  • Yang, Keun-Hyeok;Lee, Kyung-Ho;Yoon, Hyun-Sub
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.631-642
    • /
    • 2019
  • The objective of the present study is to examine the flexural behavior of two-span post-tensioned lightweight aggregate concrete (LWAC) beams using unbonded tendons and the reliability of the design provisions of ACI 318-14 for such beams. The parameters investigated were the effective prestress and loading type, including the symmetrical top one-point, two third-point, and analogous uniform loading systems. The unbonded prestressing three-wire strands were arranged with a harped profile of variable eccentricity. The total length of the beam, measured between both strand anchorages, was 11000 mm. The test results were compared with those compiled from simply supported LWAC one-way members, wherever possible. The ultimate load capacity of the present beam specimens was evaluated by the collapse mechanism of the plasticity theorem and the nominal section moment strength calculated following the provision of the ACI 318-14. The test results showed that the two-span post-tensioned LWAC beams had lower stress increase (Δfps) in the unbonded tendons than the simply supported LWAC beams with a similar reinforcement index. The effect of the loading type on Δfps and displacement ductility was less significant for two-span beams than for the comparable simply supported beams. The design equations for Δfps and Δfps proposed by ACI 318-14 and Harajli are conservative for the present two-span post-tensioned LWAC beams, although the safety decreases for the two-span beam, compared to the ratios between experiments and predictions obtained from simply supported beams.

Study on the Effect on the Development Design of Headed Deformed Bars by change of ACI 318-19 (ACI 318-19 변경에 따른 확대머리철근 정착설계의 영향분석)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.110-111
    • /
    • 2019
  • In ACI 318-19 published recently, the conditions and development length equation to use the headed deformed bars were changed considerably. Although the use of the larger-diameter(No.14 and 18) headed deformed bars isn't yet permitted, the use of the high strength(80,000psi) headed deformed bars is permitted and the effect of bar-diameter($d_b$) on the development length is increased considerably. Therefore, structures using larger-diameter headed deformed bars will be expected to be affected by this code change. We will study the effect of the code change on the development design and find out the design optimization method to minimize the effect of the changed conditions and development length equation.

  • PDF

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

Comparison of Deep Beam Designed by Two Models of STM and ACI Traditional (깊은 보의 스트럿-타이 모델과 고전적인 방법의 설계 비교)

  • Lymei, Uy;Son, Byung-Jik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.8-14
    • /
    • 2013
  • Deep beam shall be designed either by taking into account nonlinear distribution of strain or by Appendix A of Strut-and-Tie Models (STM) according to ACI 318(M) from version of 2002. Although STM is accepted as tool in design Discontinuity region (D-region) which mostly exist in Deep beam, Corbels, Dapped ends etc., it has been modified by many researchers. In this study we design deep beam by STMs which use simple truss for load distribution and the model of complex truss for load distribution compare with the ACI traditional which is designed by flexure design method and shear provided by concrete($V_c$) as provided in special provisions section of 11.8 in ACI 318-99 [1]. This study aims to find the different and efficiency of deep beam design based on variation of parameter compiled from many samples selected from ACI traditional and two model of STMs, simple and complex load distribution.

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

Evaluation of Minimum Spiral Reinforcement Ratio of Circular RC Columns (철근콘크리트 원형기둥의 나선철근 최소철근비에 대한 평가)

  • Kim, Young-Seek;Kim, Hyeong-Gook;Park, Cheon-Beom;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.

Evaluation of Structural Performance of RC Beam with Different Depths to Lap Splice Detail of SD700 Headed Bar (SD700 확대머리 철근의 겹침이음 상세를 적용한 단차가 있는 RC 보의 구조성능 평가)

  • Lee, Ji-Hyeong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • This paper conducts an evaluation of the structural performance of the lap splice detail of SD700 headed bar experiment for developing an RC beam with different depths joint details. The experiment variable is lap splice length, yield strength, and end anchorage of main reinforcements. For all specimens, a headed bar was applied to the main reinforcement of the beam with low depth (B2), and the beam with high depth (B1) was applied to the main reinforcement with two splice methods: straight headed bar and 90° hooked-headed bar. The experimental results were that specimens of applying SD500 and SD600 had the results of flexural fracture at the lap splice location, which maximum load was similar. For specimens of appling SD500, the 90° hooked-headed bar of B1, suppressed horizontal cracks in the lap splice section compared to the straight headed bar. Specimens of applying an SD 700 headed bar had the results of brittle anchorage failure. In addition, maximum load was increased with the lap splice length increasing. For specimens of applying SD700 headed bar, test for test maximum load/theoretical load for test development length/design development length were estimated to be 1.30~1.48 for the ACI 318-19 equation, and 1.14~1.30 for the KDS-2021 equation. Thus, ACI 318-19 equation had conservatively greater safety factors as estimated development lengththened.