• Title/Summary/Keyword: ACI

Search Result 956, Processing Time 0.028 seconds

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

Cyclic Behavior of Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 적용한 철근콘크리트 연결보의 이력거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • Diagonal reinforced coupling beam of coupled shear walls can provide sufficient strength and stiffness to resist lateral force. However, the reinforcement details for coupling beams required by ACI 318 (2011) are difficult to construct because of the reinforcement congestion and confined interior area. This study presents experimental results about the seismic performance of coupling beams having bundled diagonal reinforcement to improve the workability. Experiments were conducted using half scaled precast coupling beams having an aspect ratio of 2.0. It was observed that the bundled diagonal reinforced coupling beams can develop seismic performance similar to the coupling beams with requirement details specified in ACI 318 (2011).

Shear Capacity of Higth-Strength Concrete Beams With a Shear Span-Depth Ratio Between 1.5 and 2.5 (전단-스팬비가 작은 고강도철근콘크리트 보의 전단성능)

  • 문정일;안종문;김대근;이광수;이승훈;오정근;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.106-110
    • /
    • 1992
  • This paper is an experimental study on shear capacity of the high strength R/C beams with a shear span-depth ratio between 1.5 and 2.5. a total of 15 beams was tested to determine diagonal cracking and ultimate shear strength. The major variables are shear span-depth ratio (a/d=1.5, 2.0. 2.5) , vertical shear reinforcements ratio(Vs = 0 , 25, 50, 75, 100% ( Vs = Pv/Pv(ACI)), and concrete compressive strength (f'c= 747㎏/㎠). Test results indicate that ACI 318-89 Eq(11-31) generally underestimates shear strength carried by vertical shear reinforcements, and the mode of failure may change from shear tension to shear compression for the beams having higher Vs than 75%, thus the effectiveness of r-fy on ultimate shear strength (vu) decreased.

  • PDF

Size Effect on Shear Strength of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단강도에 관한 크기효과)

  • 김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.155-160
    • /
    • 1992
  • In this study , the size effect on diagonal shear failure of reinforced high strength concrete beams was investigated, For this purpose, ten singly reinforced high strength concrete beams without web reinforcement were tested for five different dimensions of effective depth which were varied from 67mm to 915mm. The compressive strength of concrete used in this study was 53.7 MPa. One type of reinforcing bar with nominal yield strength of 400 MPa was used. Test results were analyzed and compared with strength predicted by ACI code equation, Zutty's equation and Bazant &Kim's equation. As the results, ACI code equation was seriously unconservative for beams with d of 915mm. Bazant & Kim's equation predicted well the trend of test data. Within the scope of this study, there was no clear difference in size effect with variation of compressive strength of concrete.

  • PDF

An Experimental Study on Bond Property of Reinforced High Strength Concrete Beam (고강도 철근콘크리트 보의 부착특성에 관한 실험적 연구)

  • 조상섭;김상우;이시학;김용부
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.605-608
    • /
    • 1999
  • The objective of this research is to examine whether the determination of development length for high strength concrete by the ACI Building Code 318-95 could be applied and the upped limit of compressive strength, 700kg/$\textrm{cm}^2$ is suitable. Eight beam specimens were tested. Each beam was designed to include two bars in tension, spliced at the center of the span. The beams were loaded in positive bending with the splice in a constant moment region. The variables used here were compressive strength and the space of stirrup within splice length. The results indicated that for (c$\div$Ktr)/db of the range of 1.5-2.0 compressive strength up to 800kg/$\textrm{cm}^2$ is acceptable with regard to bond strength and ductility, thus the limit of compressive strength in ACI 318-95 may be extended to 800kg/$\textrm{cm}^2$.

  • PDF

An Experimental Study on the Shear behavior of High Strength light-aggregate Reinforced Concrete Beam (고강도 경량 콘크리트 보의 전단거동에 관한 실험적 연구)

  • 박완신;진인철;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.385-388
    • /
    • 1999
  • This study is to investigate experimentally the shear capacity of high-strength reinforced concrete beams subjected to monotonic loading. Nine reinforced concrete beams using high strength concrete $(f'c=380kg/\textrm{cm}^2)$ are tested to determine their diagonal cracking and ultimate shear capacity. The main variables are shear span-depth ratio a/d=1.5, 2.5, 3.5, and shear reinforcement ratio. All specimens are 170mm wide and have a total depth of 300mm. The test results indicate that ACI 318-95(b) Code for shear capacity gave closest agrement with the exsprimental results. The beams with a shear spear-depth ratio 1.5 and 2.5. ACI 318-95 Code underestimates shear strength carried by vertical shear reinforcements.

A study on the Flexural Behavior of Structural Deck Plate using High-Strength Lightweight Concrete (고강도경량콘크리트를 사용한 구조용 Deck Plate의 휨거동에 관한 연구)

  • 김철환;최명신;안종문;김범조;소병규;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.505-512
    • /
    • 1998
  • The object of this study is investigated to flexural behavior of structural deck plate composite slabs using high-strength lightweight concrete. Test variables are concrete compressive strength (normal weight concrete 210kg/$\textrm{cm}^2$, lightweight concrete 270, 350kg/$\textrm{cm}^2$), topping concrete thickness (70, 75mm when span is 3.4m), deck plate depth (50, 75mm when topping concrete thickness is 70mm and span is 3.4m) and span(3.0, 3.4m). Test results are compared with current ACI Building Code(318-95). The test results are follows ; (1) a value of Ptest/Pcal is 1.27~1.39, (2) a mean value of $\delta$test/ $\delta$ACI is, 0.60 when deflection is reatched to maximam permissible computed deflection (L/360), and (3) ductility index are 3.61~6.85.

  • PDF

The Investigation of Blocks on High Strength Concrete (고강도 콘크리트 부재의 응력블록에 관한 검토)

  • 신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1990
  • The object of this study was to investigate the flexural stress blocks of High Strength Concrete Members under monotonic loading. Such a stress block should be clearly idealized before High Strength Concrete can be used with confidence in Structural Members. The principal test variables were the Compressive Strength of Concrete, the percentage of longitudinal reinforcement and the spacing of confinement reinforcement. The rectangular stress block of the present ACI Building Code was found to give acceptably conservative flexural strength predictions over the entire range of concrete strength from 280kg/crd (4Ksi)to 1050kg/crd( 15Ksi)

An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam (고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • 함영삼;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

A Study for the Long Term Behavior of Steel-Concrete Composite Structures (합성구조물의 장기거동에 관한 연구)

  • 김진근;어석홍;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.325-330
    • /
    • 1994
  • In this study, analytical methods for predicting the long term behavior of steel-concrete composite structures due to creep and shrinkage of concrete are investigated. For structural analysis considering long term behavior, the results are much dependent6 on the predictive models for creep and shrinkage of concrete which are ACI model, CEB-FIP model and BP model and the methods for the time analysis of structures which are AEMM, RCM and IDM. To demonstrate the validity of the program which was developed for this study, a steel-concrete composite column subjected to constant axial deformation was tested, and the experimental results wewe compared with analytical results. It was found that stresses are redistributed between concrete and wide flange steel, and analytical results by ACI model and IDM well predict the experimental data.

  • PDF