• 제목/요약/키워드: ACE2 Inhibitor

검색결과 74건 처리시간 0.028초

Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor

  • Diningrat, Diky Setya;Sari, Ayu Nirmala;Harahap, Novita Sari;Kusdianti, Kusdianti
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.289-303
    • /
    • 2021
  • Covid-19 is an ongoing pandemic as we speak in 2022. This infectious disease is caused by the SARS-CoV-2 virus, which infects cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. Thus, strategies that inhibit the binding of SARS-CoV-2 to the ACE2 receptor can stop this contagion. Hanjeli (Coix lacryma-jobi) essential oil contains many bioactive compounds, including dodecanoic acid; tetradecanoic acid; 7-Amino-8-imino-2-(2-imino-2H-chromen-3-yl); and 1,5,7,10-tetraaza-phen-9-one. These compounds suppress viral replication and may prevent Covid-19. Accordingly, this study assessed whether, these four limonoid compounds can block the ACE2 receptor. To this end, their physicochemical properties were predicted using Lipinski's "rule of five" on the SwissADME website, and their toxicity was assessed using the online tools ProTox and pkCSM. Additionally, their interactions with the ACE2 receptor were predicted via molecular docking using Autodock Vina. All the four compounds satisfied the "rule of five" and tetradecanoic acid was predicted to have a higher affinity than the comparison compound remdesivir and the original ligand of ACE2. Molecular docking results suggested that the compounds from hanjeli essential oil interact with the active site of the ACE2 receptor similarly as the original ligand and remdesivir. In conclusion, hanjeli essential oil contains compounds predicted hinder the interaction of SARS-CoV-2 with the ACE2 receptor. Accordingly, our data may facilitate the development of a phytomedical strategy against SARS-CoV-2 infection.

흑진주벼 미강으로부터 생리기능성 물질의 탐색 및 추출조건 (Detection and Extraction Condition of Physiological Functional Compounds from Bran of Heugjinju rice (Oryza sativa L.))

  • 이국영;김재호;손종록;이종수
    • 한국식품저장유통학회지
    • /
    • 제8권3호
    • /
    • pp.296-301
    • /
    • 2001
  • 혹진주벼 미강으로부터 생리기능성 물질을 추출하여 이들을 이용한 생리기능성 제품을 개발하기 위하여 먼저 흑진주벼 미강에 함유되어있는 유용물질들을 추출한 후 이들의 생리기능성을 측정하였고 미강 중에 많이 함유되어있는 ACE저해활성물질과 혈전용해활성물질, 전자공여물질과 tyrosinase 저해물질들의 추출최적조건을 검토하였다. ACE 저해활성과 혈전용해활성 및 tyrosinase 저해활성은 물 추출액에서 높았고 전자공여능은 hexane 추출액에서 높았다 그러나 SOD 유사활성과 아질산염 소거활성은 없거나 매우 미약하였다. 흑진주벼 미강에 물을 1 : 20으로 첨가하여 2$0^{\circ}C$ 에서 12시간 추출하였을 때 ACE 저해활성물질이 가장 많이 추출되었고 물을 1 : 10으로 하여 35$^{\circ}C$에서 18시간 추출하였을 때 혈전용해활성물질이 가장 많이 추출되었다. 또한 전자공여물질은 20배의 hexane으로 2$0^{\circ}C$에서 18시간, tyrosinase 저해제는 10배의 물로 2$0^{\circ}C$에서 18시간 추출하였을 때 가장 많이 용출 되었다.

  • PDF

Tumor necrosis factor α-converting enzyme inhibitor attenuates lipopolysaccharide-induced reactive oxygen species and mitogen-activated protein kinase expression in human renal proximal tubule epithelial cells

  • Bae, Eun Hui;Kim, In Jin;Choi, Hong Sang;Kim, Ha Yeon;Kim, Chang Seong;Ma, Seong Kwon;Kim, In S.;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.135-143
    • /
    • 2018
  • Tumor necrosis $factor-{\alpha}$ ($TNF{\alpha}$) and the angiotensin system are involved in inflammatory diseases and may contribute to acute kidney injury. We investigated the mechanisms by which $TNF{\alpha}$-converting enzyme (TACE) contributes to lipopolysaccharide (LPS)-induced renal inflammation and the effect of TACE inhibitor treatment on LPS-induced cellular injury in human renal proximal tubule epithelial (HK-2) cells. Mice were treated with LPS (10 mg/kg, i.p.) and HK-2 cells were cultured with or without LPS ($10{\mu}g/ml$) in the presence or absence of a type 1 TACE inhibitor ($1{\mu}M$) or type 2 TACE inhibitor ($10{\mu}M$). LPS treatment induced increased serum creatinine, $TNF{\alpha}$, and urinary neutrophil gelatinase-associated lipocalin. Angiotensin II type 1 receptor, mitogen activated protein kinase (MAPK), and TACE increased, while angiotensin-converting enzyme-2 (ACE2) expression decreased in LPS-induced acute kidney injury and LPS-treated HK-2 cells. LPS induced reactive oxygen species and the down-regulation of ACE2, and these responses were prevented by TACE inhibitors in HK-2 cells. TACE inhibitors increased cell viability in LPS-treated HK-2 cells and attenuated oxidative stress and inflammatory cytokines. Our findings indicate that LPS activates renin angiotensin system components via the activation of TACE. Furthermore, inhibitors of TACE are potential therapeutic agents for kidney injury.

대구의 간 단백질의 효소적 가수분해물로부터 안지오텐신 I 전환효소 저해 펩타이드의 분리.정제 및 특성 (Purification and Characterization of Angiotensin I Converting Enzyme lnhibitory Peptides from Enzymatic Hydrolysate of Cod Liver Protein)

  • 최영일;박표잠;최정호;변희국;정인철;문성훈;김세권
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.140-149
    • /
    • 2000
  • In order to utilize marine processing waste which would normally be discarded, cod liver protein was hydrolysed by ${\alpha}$-chymotrysin, and the hydrolysate was investigated for the new angiotensin I converting enzyme (ACE) inhibitor. Thy hydrolysate was separated into three major types, with molecular weight cut-off (MWCO) values less than 10 kDa, 5 kDa and 1 kDa of ultrafiltration membranes, respectively. ACE inhibitory peptides were isolated from the fractions passed through MWCO 1 kDa membrane, and purified by using ion-exchange chromatography on a SP-Sephadex C-25 column, gel filtration on a Sephadex G-15 column, and HPLC on an ODS column. The purity was identified with capillary electrophoresis. The amino acid sequences of two peptides were Met-Ile-Pro-Pro-Tyr-Tyr (IC50=10.9 ${\mu}$M) and Gly-Leu-Arg-Asn-Gly-Ile (IC50=35.0 ${\mu}$M)

  • PDF

Purification of an ACE Inhibitory Peptide from Hydrolysates of Duck Meat Protein

  • Kim, So-youn;Kim, Sun-hye;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.66-69
    • /
    • 2003
  • An angiotensin converting enzyme (ACE) inhibitory peptide was isolated and purified from the hydrolysates of duck meat protein. Duck meat protein was hydrolyzed using trypsin at 37$^{\circ}C$ for 2 hrs. An ACE inhibitory peptide was purified using membrane filtration, anion exchange chromatography, gel permeation chromatography, fast protein liquid chromatography, normal phase HPLC. The purified inhibitory peptide was identified to be a tetrapeptide, Glu-Asp-Leu-Glu having $IC_{50}$/ value of 85.9 $\mu$M.

Characterization of New Antihypertensive Angiotensin I-Converting Enzyme Inhibitory Peptides from Korean Traditional Rice Wine

  • Kang, Min-Gu;Kim, Jae-Ho;Ahn, Byung-Hak;Lee, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.339-342
    • /
    • 2012
  • This study describes the characterization of a new angiotensin I-converting enzyme (ACE) inhibitory peptide from a Korean traditional rice wine. After purification of the ACE inhibitor peptides with ultrafiltration, Sephadex G-25 column chromatography, and successively $C_{18}$ and SCX solid-phase extraction, reverse-phase HPLC, and size exculsion chromatography, two types of the purified ACE inhibitors with $IC_{50}$ values of 0.34 mg/ml and 1.23 mg/ml were finally obtained. The two purified ACE inhibitors (F-1 and F-2) were found to have two kinds of novel oligopeptides, showing very little similarity to other ACE inhibitory peptide sequences. The amino acid sequences of the two purified oligopeptides were found to be Gln-Phe-Tyr-Ala-Val (F-1) and Ala-Gly-Pro-Val-Leu-Leu (F-2), and their molecular masses were estimated to be 468.7 Da (F-1) and 357.7 Da (F-2), respectively. They all showed a clear antihypertensive effect on spontaneously hypertensive rats at a dosage of 500 mg/kg.

Effects of Angiotensin Converting Enzyme Inhibition on Gene Expression of the Renin-Angiotensin System in Rats

  • Lee, Young-Rae;Lee, Mi-Young;Kim, Woon-Jung;Lee, Won-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.771-778
    • /
    • 1998
  • To investigate interaction of angiotensin converting enzyme (ACE) inhibitor with local tissue renin- angiotensin system (RAS), changes in gene expression of the RAS components in various tissues in response to chronic administration of an ACE inhibitor, enalapril, were examined in Sprague-Dawley male rats. Enalapril was administered in their drinking water $(3{\sim}4\;mg/day)$ over 8 wk. Plasma and renal ACE activity increased significantly after 4 and 8 wk of enalapril treatment. Renin levels of the plasma and kidney of the enalapril-treated rats markedly increased after 4 wk and decreased thereafter, but still remained significantly higher than those of control rats. Kidney mRNA levels of renin markedly increased after 4 and 8 wk of enalapril treatment, but those of angiotensinogen and ANG II-receptor subtypes, $AT_{1A}$ and $AT_{1B}$, did not change significantly. The liver expressed genes for renin, angiotensinogen and $AT_{1A}$ receptor subtype, but $AT_{1B}$ receptor subtype mRNA was not detectable by RT-PCR. None of mRNA for these RAS components in the liver changed significantly by enalapril treatment. The hypothalamus showed mRNA expressions of renin, angiotensinogen, $AT_{1A}$ and $AT_{1B}$ receptor subtypes. $AT_{1A}$ receptor subtype mRNA was more abundant than $AT_{1B}$ receptor subtype in the hypothalamus as shown in the kidney. However, gene expression of the RAS components remained unchanged during 8-wk treatment of enalapril. In the present study, chronic ACE inhibition increased plasma and renal levels of ACE and renin, but did not affect mRNA levels of other RAS components such as angiotensinogen, ANG II receptor subtypes in the kidney. Gene levels of the RAS components in the liver and hypothalamus were not altered by chronic treatment of enalapril. These results suggest the differential expression of the RAS components in response to enalapril, and localized action and some degree of tissue specificity of enalapril.

  • PDF

옥수수 글루텐 효소 가수분해물의 Angiotensin I Converting Enzyme 활성 저해 펩타이드의 정제 (Peptide Inhibitors for Angiotensin I Converting Enzyme from Corn Gluten Digests.)

  • 오광석;이동건;홍정운;성하진
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.51-56
    • /
    • 2003
  • 안정성이 확보된 식품에서 ACE저해 활성 물질을 검색하는 연구의 일환으로, 옥수수 글루텐을 Flavourzyme, Pescalase, 그리고 Thermolysine/Pescalase 등으로 가수분해하여 얻은 가수 분해물로부터 ACE 활성 저해 펩타이드를 다음과 같은 과정으로 분리, 정제하였다. 10% 에탄올로 평형화된 ODS chromatography를 이용 단백질 분획들을 얻고, Bio-Gel P-2 column과 reverse phase HPLC를 통해 5개의 ACE 저해 펩타이드를 분리, 정제하였다. 그 아미노산 서열은 LPF($IC_{50}$ = 40 $\mu$M), GPP($IC_{50}$ = 17.6 $\mu$M), PNPY($IC_{50}$ = 30.7 $\mu$M), SPPPFYL($IC_{50}$/ = 63 $\mu$M), and SQPP($IC_{50}$ = 17.2 $\mu$M)로 밝혀졌다. 이 펩타이드들은 경구투석 시 가수분해 효소에 대응하여 체내에서 안정성이 뛰어나고, 소장에서도 쉽게 흡수될 것으로 사료되어 상시 섭취하는 식품이나 음료에 첨가하여 이용한다면 그 유용성이 기대된다.

Screening for Angiotensin 1-Converting Enzyme Inhibitory Activity of Ecklonia cava

  • Athukorala Yasantha;Jeon, You-Jin
    • Preventive Nutrition and Food Science
    • /
    • 제10권2호
    • /
    • pp.134-139
    • /
    • 2005
  • Seven brown algal species (Ecklonia cava, Ishige okamurae, Sargassum fulvellum, Sargassum horneri, Sargassum coreanum, Sargassum thunbergii and Scytosiphon lomentaria) were hydrolyzed using five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase) and screened for angiotensin 1-converting enzyme (ACE) inhibitory activities. Most algal species examined showed good ACE inhibitory activities after the enzymatic hydrolysis. However, E. cava was the most potent ACE inhibitor of the seven species. Flavourzyme digest of E. cava exhibited an $IC_{50}$ of around $0.3\;{\mu}g/mL$ for ACE; captopril has an $IC_{50}$ of $\~0.05\;{\mu}g/mL$. The Flavourzyme digest was separated to three fractions by an ultrafiltration membrane (5, 10, 30 kDa MWCO) system according to the molecular weights. The active components were mainly concentrated in >30 kD fraction which are composed of the highest protein content $(27\%)$ and phenolic content (261 mg/100 mL) compared to the other two smaller molecular weight fractions. Therefore, the active compounds appear to be relatively high molecular weight complex molecules associated with protein (glycoprotein) and polyphenols. Therefore, E. cave is a potential source of antihypertensive compound.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • 제29권2호
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.