• Title/Summary/Keyword: ACAT

Search Result 91, Processing Time 0.026 seconds

Production of Phytol, an ACAT Inhibitor, from Callus Culture of Lettuce (Lactuca sativa L.) (상추 (Lactuca sativa L.) callus로부터 ACAT 억제 활성물질, phytol의 생산)

  • An, Kwang-Hee;Jang, Tae-O;Baek, Nam-In;Kim, Se-Young
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • The possibility for mass production of phytol, inhibitory diterpene against ACAT (Acyl-CoA: Cholesterol acyltransferase) was investigated by using callus culture of lettuce. The callus were induced from lettuce cotyledon explants on MS medium containing 0.5 mg.L$^{-1}$ NAA after 4 week's culture. Adventitious roots were formed from the explants on MS medium containing 0.5 mg.L$^{-1}$ IBA or 1.0 mg.L$^{-1}$ NAA. Adventitious shoots and roots were emerged from the callus when the callus was transferred to MS medium containing auxin alone, or with cytokinin. The plant growth regulators and their concentrations for the organogenesis were 1.0 mg.L$^{-1}$ NAA, 0.1 mg.L$^{-1}$ BA, 0.5 mg.L$^{-1}$ NAA with 0.1 mg.L$^{-1}$ kinetin, or 0.5 g.L$^{-1}$ 2.4-D with 1.0 mg.L$^{-1}$ kinetin. Analyses of chlorophyll contents showed that chlorophyll contents were higher in morphogenic calli than in non-morphogenic calli. However, the chemical analyses of gas chromatography indicated that phytol contents were not proportionate to the chlorophyll contents of callus. The content of phytol was higher in callus than in lettuce cotyledon.ledon.

Development of Biologically Active Compounds from Edible Plant Sources XXII. Triterpenoids from the Aerial Parts of Sajabalssuk (Artemisia princeps PAMPANINI) (식용식물자원으로부터 활성물질의 탐색-XXII. 사자발쑥(Artemisia princeps PAMPANINI)의 지상부로부터 Triterpenoid의 분리)

  • Bang, Myun-Ho;Cho, Jin-Gyeong;Song, Myoung-Chong;Lee, Dae-Young;Han, Min-Woo;Chung, Hae-Gon;Jeong, Tae-Sook;Lee, Kyung-Tae;Choi, Myung-Sook;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • The aerial parts of Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk) was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc fraction, three cycloartane-type triterpnoids and one ursane-type triterpenoid were isolated through the repeated silica gel, ODS and Sephadex LH-20 column chromatographies. From the results of physico-chemical data including NMR, MS and IR, the chemical structures of the triterpenoids were determined as wrightial (1), wrightial acetate (2), 27-norcycloart-20(21)-ene-25-al-3${\beta}$-ol acetate (3) and ursolic acid (4). No report has been found for isolation of compound 3 in the literature so far, and compounds 1, 2 and 3 were the first to be isolated from Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk). Also, compound 1 showed Acyl-CoA:Cholesterol acyltransferase (hACAT-1) and hACAT-2 inhibitory activity with the $IC_{50}$ values of 33.0 and 45.0 ${\mu}g/ml$, respectively. Compounds 2 and 3 inhibited hACAT-1 activity with the $IC_{50}$ values of 12.0 and 16.0 ${\mu}g/ml$, respectively.

Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets

  • Cha, Jae Hoon;Kim, Sun Rim;Kang, Hyun Joong;Kim, Myung Hwan;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.501-506
    • /
    • 2016
  • BACKGROUNG/OBJECTIVES: Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS: Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor ${\alpha}$ were determined. RESULTS: Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS: CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

Phenylpropanoids from Myristica fragrans Houtt (육두구(Myristica fragrans Houtt)로부터 Phenylpropanoid의 분리)

  • Song, Myoung-Chong;Ahn, Eun-Mi;Bang, Myun-Ho;Kim, Se-Young;Rho, Yeong-Deok;Kwon, Byuong-Mog;Lee, Hyun-Sun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.366-369
    • /
    • 2004
  • Myristica fragrans Houtt were extracted in 80% aq. MeOH and solvent fractionated sing $CHCl_3$, EtOAc, n-BuOH and water, successively. The n-BuOH fraction gave three phenylpropanoids through application of silica gel column chromatographies. The chemical structures of the phenylpropanoids were determined by the interpretation of several spectral data, including NMR and MS as meso-dihydroguaiaretic acid (1), nectandrin B (2) and syringin methyl ether (3). Compound 1, which was first isolated from this plant by authors, showed inhibitory activities with $60.0{\pm}2.1%\;(100\;{\mu}g/ml),\;42.6{\pm}0.9%\;(140\;{\mu}g/ml)\;and\;12.2{\pm}0.2%\;(200\;{\mu}g/ml)$ on ACAT(acyl-CoA:Cholesterol Acyltransferase), chitin synthase III and HMG-CoA reductase (3-hydroxy-3-methylglutaryl coenzyme A reductase), respectively. Compound 3 showed inhibitory activities with $27.2{\pm}0.9%\;(100\;{\mu}g/ml),\;45.5{\pm}0.8%\;(200\;{\mu}g/ml)$ on ACAT and chitin synthase III.

Ergosterol Peroxide from Flowers of Erigeron annuus L.as an Anti-Atherosclerosis Agent

  • Kim, Dong-Hyun;Jung, Sung-Je;Chung, In-Sik;Lee, Youn-Hyung;Kim, Dae-Keun;Kim, Sung-Hoon;Kwon, Byoung-Mog;Jeong, Tae-Sook;Park, Mi-Hyun;Seoung, Nak-Sul;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.541-545
    • /
    • 2005
  • Flowers of Erigeron annuus L. were extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH, and H$_2$O. Repeated silica gel and OD S column chromatography of the EtOAc fraction led to the isolation of a sterol, through activityguided fractionation, using ACAT inhibitory activity measurements. From the physico-chemical data, including NMR, MS, and IR, the chemical structure of the compound was determined to be an ergosterol peroxide (1), which has been isolated for the first time from this plant. This compound exhibited hACAT-1 and Lp-PLA$_2$ inhibitory effects, with inhibitory values of 51.6 ${\pm}$ 0.9 and 51 .7 ${\pm}$ 1.2%, at a treatment concentration of 0.23 mM.

Cytotoxic and ACAT-inhibitory Sesquiterpene Lactones from the Root of Ixeris dentata forma albiflora

  • Ahn, Eun-Mi;Bang, Myun-Ho;Song, Myoung-Chong;Park, Mi-Hyun;Kim, Hwa-Young;Kwon, Byoung-Mog;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.937-941
    • /
    • 2006
  • Ixeris dentata forma albiflora was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_{2}O$. Eight sesquiterpenes were isolated through repeated silica gel and octadecyl silica gel ($C_{18},\;ODS$) column chromatography of the EtOAc and n-BuOH fractions. Physicochemical analysis using NMR, MS and IR revealed the chemical structures of the sesquiterpenes, which were zaluzanin (1), 9a-hydroxyguaian-4(15), 10(14), 11 (13)-triene-6, 12-olide(2), $3{\beta}-O-{\beta}-D-glucopyranosyl-8{\beta}-hydroxyguaian$-4(15), 10(14)-diene-6, 12-olide (3), $3-O-{\beta}-D-glucopyranosyl-8{\beta}-hydroxyguauan$-10(14)-ene-6, 12-olide (4), ixerin M (5), glucozaluzanin C (6), crepiside I (7), and ixerin D (8). This is the first time that these sesquiterpene lactones have been isolated from this plant. Compounds 1, 2 and 7 revealed relatively high cytotoxicities on human colon carcinoma cell and lung adeno-carcinoma cell, while compounds 5 and 7 showed acyl-CoA: cholesterol acyltransferase (ACAT) inhibitory activity.

Effect of Hwangryunagyotang Water Extract on Endothelial Cells by Free Cholesterol. (황련아교탕(黃連阿膠湯)이 Free Cholesterol에 의한 혈관내피세포 손상에 미치는 영향)

  • Lee, So-Yeon;Yoon, Hyun-Duk;Shin, Oh-Chul;Shin, Yoo-Jung;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.589-602
    • /
    • 2006
  • Hwangryunagyotang is supposed to have significant effects on some sorts of cardiovascular diseases like atherosclerosis. For this study. ACAT inhibitor was put in LDLR -/- mice to derive free cholesterol from it. This was to examine the effectiveness of Hwangryunnagyotang on its protecting and recovering function with endothelial cells damaged by free cholesterol through experimental. The results reported below. Hwangryunagyotang suppressed the crystallization of reactive oxygen species in macrophages and the numbers of free cholesterol crystal plate structured and reduced fragmentation of nucleus in ECV 304 cell strain by ACAT inhibitor significantly. Hwangryunagyotang also suppressed the necrosis of tissue in LDLR -/- mice' (treated with ACAT inhibitor) inflammatory portion which is adjacent to aortic root, proximal aorta and carotid artery by immunohistochemistry and fluorescence microscopy. On the whole, Hwangryunagyotang suppressed the necrosis of endothelial cells and especially it's effcet for the necrosis of para-myocardial tissues by free cholesterol. With this result, I suggest Hwangryunagyotang might have protective and recovery effects on atherosclerosis, so we need to carry on this study henceforth clinically and experimentally as well.

  • PDF

Quercetin Supplement is Beneficial for Altering Lipid Metabolism and Antioxidant Enzyme Activities in the Middle of Ethanol Feeding in Rats

  • Seo, Hyun-Ju;Kim, Soon-Ja;Do, Gyeong-Min;Choi, Myung-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.259-266
    • /
    • 2006
  • The current study examined the effect of quercetin supplements on the lipid-lowering and antioxidant metabolism in ethanol-fed rats. The control $group(E_8)$ received ethanol only diet for 8 wks, whereas the other group$(E_8Q_4)$ received a diet including quercetin supplementation(0.05% wt/wt) for 4 wks while on the ethanol diet for 8wks. The hepatic alcohol dehydrogenase activity was significantly higher in the $E_8Q_4$ group than in the $E_8$ group. Supplementation with quercetin significantly elevated the HDL- cholesterol concentration, the HDL-C/total-C ratio, and lowered the atherogenic index(AI) compared to the $E_8$ group. The hepatic triglyceride and cholesterol contents were significantly lowered by the quercetin supplement compared to those of the control group. The hepatic HMG-CoA reductase and ACAT activities of the $E_8Q_4$ group were significantly lower than those of the $E_8$ group. The overall potential for antioxidant defense was significantly enhanced by the quercetin supplement, as indicated by a decrease in plasma and hepatic TBARS levels. The hepatic GSH-Px and G6PD activities were significantly higher in the $E_8Q_4$ group compared to the $E_8$ group. The current results suggest that dietary quercetin leads to the inhibition of HMG-CoA reductase and ACAT, which in turn lowers cholesterol levels and normalizes antioxidant enzyme activities.