• Title/Summary/Keyword: AC-DC-AC converter

Search Result 1,024, Processing Time 0.024 seconds

Spectral Analysis of DC Link Ripple Currents in Three-Phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 직류링크 리플전류의 주파수 영역 해석)

  • 이동춘;박영욱;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.244-252
    • /
    • 2002
  • In this paper, do link ripple currents for three-phase ac/dc/ac PWM converters feeding adjustable speed ac machine drives are analysed in a frequency domain. The expression of the harmonic currents is developed by using switching functions of the converter and exponential courier series expansion. The effect of the displacement angle between the switching Periods of line-side converters and motor-side inverters on the dc link ripple currents is Investigated. Also, the influence of asynchronization of PWM is observed. The result of analysis is compared with frequency spectrum which results from PSIM simulation. The proposed analysis technique is useful to understand the principles of P% and to derive an equivalent model of the dc link capacitors in a high frequency range.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

AC/DC Converter Suitable for a Pulsed Mode Switching DC Power Supply (펄스모드 스위칭 직류전원 장치에 적합한 AC/DC 컨버터)

  • 문상호;강성관;노의철;김인동;김흥근;전태원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • This paper describes a novel ac/dc power converter suitable for frequent output short-circuit faults. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. The rising time of the dc load voltage is as small as several hundred microseconds, and there Is no overshoot of the dc voltage because the dc output fillet capacitors stay at a undischarged state. The proposed converter has the characteristics of a simplified structure, reduced cost, weight, and volume compared to the conventional power supplies for frequent output short-circuit. Analysis, simulations, and experiments are carried out to investigate the operation and usefulness of the proposed scheme.

A New current Controller implemented in a-b-c frame for AC-DC converter (a-b-c frame에서 구현한 AC-DCconverter 전류제어기)

  • 노의철
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.282-285
    • /
    • 2000
  • A new current controller implemented in a-b-c frame for AC-DC converter is proposed. The proposed MTPWM(Modified Trapezoidal PWM) Which is quite suitable for three phase AC-DC converter. It is known that MTPWM has good harmonics characteristics for high modulation index. It is very simple and requires no transformation in it. The results of computer simulation are shown for the validity of proosal.

  • PDF

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

Highly Efficient 13.56 MHz, 300 Watt Class E Power Transmitter (13.56 MHz, 300 Watt 고효율 Class E 전력 송신기 설계)

  • Jeon, Jeong-Bae;Seo, Min-Cheol;Kim, Hyung-Chul;Kim, Min-Su;Jung, In-Oh;Choi, Jin-Sung;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.805-808
    • /
    • 2011
  • This paper presents a design of high-efficiency and high-power class E power transmitter. The transmitter is composed of 300 Watt class E power amplifier and AC-DC converter. The AC-DC converter converts 220 V and 60 Hz AC to a 290 V DC. The generated DC voltage is directly applied to a bias of the class E power amplifier. Because the converter does not have DC-DC converter unit, it has very high conversion efficiency of about 98.03 %. To minimize the loss at the output of the power amplifier, high-Q inductor was implemented and deployed to the output resonant circuit. As a result, the 13.56 MHz class E power amplifier has a high power-added efficiency of 84.2 % at the peak output power of 323.6 W. The overall efficiency of class E power transmitter, including the AC-DC converter, is as high as 82.87 %.

3-Phase Single Stage AC-DC Converter for Small Wind Turbine System (소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터)

  • Yu-Jin Moon;Beom-Su Park;Sang-Kyu Kim;Eun-Soo Kim;Deok-Jin Lim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.