• 제목/요약/키워드: AC-DC-AC converter

검색결과 1,024건 처리시간 0.025초

능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석 (Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter)

  • 김만고
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.610-614
    • /
    • 2004
  • Recently, an active-clamp, full-bridge boost converter has been actively studied for high-power applications such as power factor correction and battery discharger. However, DC and AC modeling for this converter has not conquered. In this paper, a DC and small-signal AC modeling for the active-clamp, full-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a do counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM (Continuous conduction mode) boost and DCM (Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

  • PDF

직류철도차량에 대한 자계측정 및 분석 (Measurement and Analysis of Electromagnetic field for DC electric railway train)

  • 장동욱;김민철;이장무;한문섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1637-1639
    • /
    • 2005
  • The measurement of magnetic field is performed about DC and AC magnetic field in test track of depot. The test point is cap, on the converter/inverter box, on the traction motor, on the APSE and on the line filter, the height of measurement is bottom and 50 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through RS-232C and notebook PC. The DC magnetic field is measured by using the Hall Probe, test result is saved and analysis by PXI system. On the line filter, the maximum value is 1.4 mT in case of DC magnetic field and 0.044 mT in case of AC magnetic field at 50 Hz.

  • PDF

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

급속충전기용 파워 모듈을 위한 단일단 AC-DC 컨버터 (A Single-Stage AC-DC Power Module Converter for Fast-Charger)

  • 레덧탕;최세완
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.384-390
    • /
    • 2022
  • In this study, a single-stage, four-phase, interleaved, totem-pole AC-DC converter is proposed for a super-fast charger station that requires high power, a wide voltage range, and bidirectional operation capabilities and adopts various types of electric transport vehicles. The proposed topology is based on current-fed push-pull dual active bridge converter combined with the totem-pole operation. Owing to the four-phase interleaving effect, the bridge on the grid side can switch at 0.25, 0.5, and 0.75 to achieve a ripple-free grid current. The input filter can be removed theoretically. Switching methods for the duty of the secondary-side duty cycle are proposed, and they correspond to the primary duty cycle for reducing the circulating power and handling the total harmonic distortion. Therefore, the converter can operate under a wide voltage range. Experimental results from a 7.5 kW prototype are used to validate the proposed concept.

RECENT DEVELOPMENT OF DC-TO-AC CONVERTERS FOR SMALL UPS SYSTEMS

  • Harada, Koosuke;Sakamoto, Hiroshi;Shoyama, Masahito
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.21-24
    • /
    • 1987
  • A novel type of the sinusoidal dc-to-ac converter is presented, where a pair of switches is placed in each side of the primary and the secondary of the isolation transformer. This converter is controlled by the phase difference between the two pairs of switches. As a result, the transformer is miniaturized by making the switching frequency high and the reactive energy can be easily recovered to the dc-source. This converter is especially suitable for small UPS systems.

  • PDF

저가형 스위치드 릴럭턴스 모터 드라이브 시스템 개발 (Design and Development of Low-Cost Switched Reluctance Motor Drive System)

  • 하근수
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2162-2167
    • /
    • 2009
  • A Low cost and variable speed brushless motor drive system with single switch per phase is presented. The motor drive is realized with a novel two-phase flux-reversal-free switched reluctance motor and a split AC two switch converter. The strategy of the controller and the converter for its realization are described. Comparisons between a split AC converter, asymmetric converter, split DC converter, single controllable switch converter, and N+1 converter are performed for its device rating, cost, switching losses and conduction losses, and converter efficiency. The split AC converter is analyzed and simulated to verify the characteristics of the converter circuitry and control feasibility and the simulation results are presented. The efficiency with various loads is numerically estimated and experimentally compared from viewpoint of subsystem and system in details. The focus of this paper is to compare the presented motor drive system to the asymmetric converter system throughout experiments and demonstrate single switch per phase converter having comparable efficiency as the asymmetric converter system.

듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터 (Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter)

  • 모하마드 사미르 이르판;아쉬라프 아메드;박종후
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF

전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어 (Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality)

  • 이희준;신수철;강진욱;원충연
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

새로운 마그네틱 피드백 기법을 이용하여 낮은 링크 전압을 갖는 새로운 단일 전력단 역률 개선 AC/DC 컨버터 (Novel Single-Stage Power Factor Correction AC/DC Converter with Low DC Link Voltage using New Magnetic Feedback Technique)

  • 최은석;윤현기;김정은;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.528-532
    • /
    • 2004
  • Novel single-stage power factor correction AC/DC converter with low DC link voltage using new magnetic feedback technique is proposed in this paper. The Proposed converter has high power factor, tight output voltage regulation and low link capacitor voltage less than 450V for all the load range through the universal input line. This converter has also no dead-zone in the input current, which is seen in the conventional converter using the previous magnetic feedback technique. In this paper, the analysis of operations and features of the proposed converter is provided, and the experimental results of 90W-prototype shows the low harmonic distortions satisfied with EN 61000-3-2 Class D, high power factor and low link voltage less than 450V.

  • PDF