• Title/Summary/Keyword: AC-DC power rectifier

Search Result 220, Processing Time 0.021 seconds

A Feedforward Compensation Method for 120Hz Output Voltage Ripple Reduction of LLC Resonant Converter (LLC 공진 컨버터의 120Hz 출력전압 리플 저감을 위한 전향보상 방법)

  • Yoon, Jong-Tae;Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.46-52
    • /
    • 2021
  • This study proposes a feedforward compensation control method to reduce 120 Hz output voltage ripple in a single-phase AC/DC rectifier system composed of PFC and LLC resonant converters. The proposed method compensates for the voltage ripple of the DC-link by using the AC input and DC output power difference, and then reduces the final output voltage ripple component of 120 Hz through feedforward compensation based on the linearized frequency gain curve of the LLC resonant converter. Through simulation and experimental results, the validity of the ripple reduction performance was verified by comparing the conventional PI controller and the proposed feedforward compensation method.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

AC/DC Converter Design of The Korean Type Multi-Propulsion System (한국형 다중추진시스템의 주전력변환기 설계)

  • Jho Jeong-Min;Jung Byung-Su;Cho Heung-Jae;Kim Su-Yong;Sung Ho-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.127-133
    • /
    • 2005
  • Korean multi-propulsion system consists of a synchronous alternator driven by a gas turbine driving synchronous alternator coupled to a rectifier - DC link - DC/DC converter and traction system based on modification of the G7 high-speed train. The simulation modules include turbine engine system, alternator, rectifier, DC/DC converter and power management module. Simulation for the multi-propulsion system such as a modular is presented in order to confirm the system stability for loads with uncertain input impedances and control loop speeds. This paper deals with various simulation modules with a specific control loop to help the development of the real lame-scaled system.

A CRPWM Boost Type AC/DC Converter based on Modified Trapezoidal PWM (Modified Trapezoidal PWM을 베이스로 한 CRPWM Boost Type AC/DC Converter)

  • 권영원;노의철;김인동;김만고;전성즙;조철제;문성득
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.342-345
    • /
    • 1999
  • This paper describes a current regulated PWM boost type rectifier based on modified trapezoidal PWM. Each switch of a converter has no switching for one third period of a fundamental line current. Therefore, the switching loss of the proposed scheme is less than that of the hysteresis current controller. Operating principle is described and controller. Operating principle is described and simulations and experiments are carried out.

  • PDF

A Study on High Power-Factor Control of Boost Type Rectifier Using Duty Cycle Pattern (듀티비 패턴을 이용한 승압형 정류기의 고역률 구현에 관한 연구)

  • Lee, Kyo-Beum;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1934-1936
    • /
    • 1998
  • This paper proposes a new control scheme for enhanced power factor in the boost type AC/DC rectifier. The control scheme is to generate duty-cycle pattern without instantaneous measurement of the input line current. With a very simple controller structure the line current is forced to trace a sinusoid in phase with input voltage. The simulation results show the validity of the proposed control scheme.

  • PDF

Switched Mode Control Technique for the Series Resonant Sigle-Phase Rectifier with Unity Power Factor (단위 역률을 갖는 직렬공진형 단상 정류기의 모드 변환 제어기법)

  • Jung, Young-Seok;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.850-852
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. A dynamic model for this AC to DC converter is developed and an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor and the DC output voltage regulation without a current overshoot can be obtained.

  • PDF

Module-Type Switching Rectifier for Cathodic Protection of Underground and Maritime Metallic Constructions (지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기)

  • Moon Sang-Ho;Kim Bo-Kyoung;Kim In-Dong;Nho Eui-Cheol;Kwon Young-Won;Jeong Seong-Woo;Lim Heon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.529-532
    • /
    • 2002
  • 본 과제를 통해 금속 구조물 음극 방식용 고성능 스위칭 정류기를 개발하였다. 개발된 정류기 회로는 크게 두 부분, 즉 1대로 구성된 AC/DC 컨버터부와 4대로 구성된 Module Type DC/DC 컨버터부로 되어 있다. AC/DC 컨버터는 IGBT PWM Rectifier로서 입력전압의 역률을 거의 1로 제어하고 있으며 또한 DC Link 전압을 일정하게 제어하고 있다. Module Type DC/DC 컨버터는 ZCS/ZVS 스위칭 동작을 통하여 스위칭 손실 감소와 함께 고주파 동작을 가능하게 하여, 입력측과 출력측의 전기적 절연을 위한 변압기로 고주파 변압기를 사용할 수 있게 하였다. 이로 인해 시스템의 부피와 무게를 현저히 감소시켰다. 본 과제에서 개발한 방식용 정류기 기술은 다른 유사 분야에의 적용도 가능한 것으로 사료된다.

  • PDF

Basic Modeling and Analysis for AC Railway System based on BTB Voltage Source Converter (BTB 전압형 컨버터 기반의 전기철도 급전변전 시스템의 기본 모델링 및 해석)

  • Yoo, Hyeong-Jun;Kim, Hak-Man;Jung, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1737-1742
    • /
    • 2012
  • The scott transformer is used to supply single-phase power to the AC railway system. Since the scott transformer is a passive facility, it cannot regulate load-side voltage according to load change. Meanwhile, the Voltage Source Converter (VSC) is able to convert the voltage and control active and reactive power. In this paper, the feasibility of a AC railway system based on Back-to-Back (BTB) VSC which is composed of a rectifier, a DC-DC converter, a inverter, has been proposed. A three-phase to single-phase BTB VSC is modeled. The proposed AC railway system based on BTB VSC is tested on Matlab/Simulink.

Bi-Directional Wireless Power Transfer for Vehicle-to-Grid Systems

  • Sun, Yue;Jiang, Cheng;Wang, Zhihui;Xiang, Lijuan;Zhang, Huan
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1190-1200
    • /
    • 2018
  • A current sourced bi-directional wireless power transfer (WPT) system is proposed to solve the problems that exist in the bi-directional WPT for vehicle-to-grid (V2G) systems. These problems include the fact that these systems are not safe enough, the output power is limited and the control methods are complicated. Firstly, the proposed system adopts two different compensation and control methods on both the primary and secondary sides. Secondly, based on an AC impedance analysis, the working principle is analyzed and the parameter configuration method with frequency stability is given. In order to output a constant voltage, a bi-directional DC/DC circuit and a controllable rectifier bridge are adopted, which are based on the "constant primary current, constant secondary voltage" control strategy. Finally, the effectiveness and feasibility of the proposed methods are verified by experimental results.

An Interleaved Converter for 12-pulse Rectifier Harmonic Suppression

  • Li, Yuan;Yang, Wei;Cang, Sheng;Yang, Shiyan
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1349-1362
    • /
    • 2017
  • In order to further improve the harmonic suppression capability of conventional 12-pulse rectifiers, this paper proposes a low harmonic 12-pulse rectifier using an Active Inter-Phase Reactor (AIPR). Through a detailed analysis of the relationship between the input current, output current and circulating current of the DC side, the mechanism where the AC grid side current harmonics can be suppressed by the DC side circulating current is revealed. On this basis, an interleaved APFC controlled by a DSP is designed and used as an AIPR along with an interphase reactor. A simulation is carried out with MATLAB/Simulink and an experiment is performed on a 9-kVA prototype. The obtained results verify the feasibility and validity of the proposed approach. Compared with a traditional 12-pulse rectifier, the THD can be reduced to 1/5 of the original value, and the capacity of the AIPR is only 2% of the load power. Thus, it is suitable for high-power applications.