• 제목/요약/키워드: AC-DC Difference

검색결과 54건 처리시간 0.021초

열전형 전류 변환기의 교류-직류 전류 변환차이 자동측정시스템 개발 (Development of an automatic measurement system for the AC-DC current transfer difference of the thermal current converter)

  • 권성원;정재갑;김문석;김규태;류제천
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.350-356
    • /
    • 2005
  • We have developed a dual-channel type automatic measurement system to evaluate AC-DC current transfer difference of the thermal current converter(TCC) which is primary standard of AC current. The output drift effect of the TCC is minimized by measuring simultaneously the output voltages of two TCCs using voltmeter. Furthermore, the offset voltage of the voltmeter is cancelled nearly out by taking the average values of two outputs of TCCs measured with the forward-reverse directions using dual channel scanner. The uncertainties of the automatic system were 7 to $86{\mu}A/A$ for 3 mA to 10 A at 40 Hz to 20 kHz, which were evaluated by the comparisons between adjacent range of TCCs and inter-comparison with national measurement institute of Germany(PTB). The capability for ac-dc transfer difference measurement was improved by one order compared with that for the manual ac-dc measurement system.

교류 저전압 표준용 교류-직류 변환기의 입력임피던스 평가기술 개발 (Development of an Input Impedance Evaluation of the AC-DC Transfer Standard for Low Level AC Voltage Standard)

  • 권성원;정재갑;이상화;김문석;김한준
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.229-234
    • /
    • 2008
  • An AC-DC transfer standard(TS) is used for the AC voltage standard in the range of 2 mV to 1000 V below 1 MHz. Micro-potentiometer(${\mu}Pot$) is used to evaluate the ac-dc transfer difference(ADD) of the TS below 200 mV range. The ADD of the TS were changed by the loading effect caused from the input impedance change of the TS depend on frequency. An input impedance evaluation technique of the TS using ${\mu}Pot$ has been developed.

비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터 (A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control)

  • 오승열;김세진;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

새로운 가상 임피던스 선정기법 기반의 적응 드룹을 이용한 직류배전용 AC/DC 컨버터의 병렬운전 (Novel Adaptive Virtual Impedance-based Droop Control for Parallel Operation of AC/DC Converter for DC Distribution)

  • 이윤성;강경민;최봉연;김미나;이훈;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.328-329
    • /
    • 2020
  • The AC/DC converter, which connects the AC grid to the DC grid in the microgrid, is a critical component in power sharing and stable operation. Sometimes the AC/DC converters are connected in parallel to increase the transmission and reception capacity. When connected in parallel, circulating current is generated due to line impedance difference or sensor error. As a result of circulating current, there is deterioration and loss in particular PCS(Power Conversion System). In this paper, we propose droop control with novel adaptive virtual impedance for reducing circulating current. Feasibility of proposed algorithm is verified by PowerSIM simulation.

  • PDF

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.

DC값 차이와 AC계수 유사성을 이용한 방향성 블록 보간 (Directional Interpolation of Lost Block Using Difference of DC values and Similarity of AC Coefficients)

  • 이홍엽;엄일규;김유신
    • 한국통신학회논문지
    • /
    • 제30권6C호
    • /
    • pp.465-474
    • /
    • 2005
  • 본 논문은 잡음이 존재하는 전송 선로를 통해 전송된 영상의 손실 블록에 대해 방향성 복구 방법을 제안한다. 손실된 DCT 계수나 화소값들은 손실된 블록 주위의 마주보는 블록 간 DC값 차이(DDC:Difference of DC)와 AC계수의 유사성(SAC: Similarity of AC)으로 구성된 방향성 척도에 의해 적응적으로 선택되어진 이웃 블록들을 이용해서 선형 보간법으로 복구된다. 본 논문에서 제안하는 방향성 복구 방법은 고정된 이웃 블록을 이용하지 않고 국부 영상 내의 방향성 정보에 따라 적응적으로 변하는 이웃 블록들이 사용하기 때문에 강한 에지 성분이나 텍스쳐 영역에 대해서 효과적이다. 본 논문에서는 DDC와 SAC로 구성된 새로운 방향성 척도(CDS: Combination of DDC and SAC)를 구하고 그 방향성 척도를 통해 국부 영역의 특성에 따라 손실된 블록을 복구하기 위한 블록들을 선택한다. 모의실험에서 제안 방법은 기존의 방법보다 평균적으로 약 0.6dB의 PSNR 개선을 보였다.

MVDC 배전시스템에서 다양한 복합형 직류 차단기의 토폴로지 연구 및 분석 (Research and Analysis of Difference Hybrid DC Circuit Breaker Topologies for MVDC Distribution System)

  • 고유란;민명환;안태풍
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.503-510
    • /
    • 2020
  • The importance of DC breakers as key protection equipment is increasing in accordance with growing concerns on MVDC distribution network systems without DC/AC conversion. Different from the situation in AC systems, no natural zero-crossing point exists in DC systems. Thus, DC breaker technology is more difficult than AC breaker technology. The solutions for DC breakers can be divided into three types: mechanical, power electronics, and hybrid. In this study, the operating principles of several topologies of hybrid circuit breakers and that of the proposed DC breaker are analyzed and simulated by sorting two types. The breakers are compared in terms of the type and number of semiconductors, volume, power loss, auxiliary components, isolation, and other aspects. The advantages and disadvantages of the breakers are also analyzed.

2대의 임베디드 Z-소스 컨버터를 이용한 단상 DC-AC 인버터 (A Single-Phase DC-AC Inverter Using Two Embedded Z-Source Converters)

  • 김세진;정영국;임영철;최준호
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1152-1162
    • /
    • 2011
  • In this paper, a single-phase DC-AC inverter using two embedded Z-source converters is proposed. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The output AC voltage of the inverter is obtained by the difference of output capacitor voltages of each converter. The output voltage of each converter take shape of the asymmetrical AC waveform centering zero voltage. Therefore, the proposed inverter can generate the same output voltage despite low VA rating L-C elements, compared to the conventional inverter using high DC voltage with AC ripple. To verify the validity of the proposed system, the PSIM simulation was achieved under the condition of rapid increase of DC source (110[V]${\rightarrow}$150[V]) and R-load (50[${\Omega}$]${\rightarrow}$300[${\Omega}$]). For controlling the voltage of the inverter system, the one-cycle controller was adopted. As results, the proposed inverter output the constant AC voltage (220[V]rms/60[Hz]) for all conditions. Also, the R-L load and nonlinear diode load were adopted for the proposed inverter loads, and we could know that the its output voltage characteristics were as good as the pure R-load. Finally, the RMS and THD of output AC voltage were examined for the different loads, input DC voltages and reference voltage signals.

Dental trauma trends in emergency care: a comparative analysis before, during, and after COVID-19

  • Woo-Jung Yang;Ji-Young Yoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권6호
    • /
    • pp.339-346
    • /
    • 2023
  • Objectives: This analysis details the characteristics of dental trauma in South Korea during the coronavirus disease 2019 (COVID-19) (DC) pandemic and compares them in patients before and after COVID-19 (BC and AC, respectively). Materials and Methods: Data were collected from medical records of patients who visited Seoul National University Bundang Hospital's Emergency Dental Care Center during three 12-month periods: BC, DC, and AC (BC from March 1, 2019 to February 29, 2020; DC from March 1, 2020 to February 28, 2021; AC from March 1, 2022 to February 28, 2023). A retrospective review was conducted to investigate patient age, sex, time of visit, cause, and diagnosis. The study included 1,544 patients: 660 BC, 374 DC, and 510 AC. Results: Significant difference in age and sex was not observed among the three periods; 1-9 years of age was the largest group (38.3% in BC, 29.6% in DC, and 27.8% in AC), and the percentage of male patients was greater than of female patients (male proportion as 63.5% in BC, 67.4% in DC, and 64.9% in AC). The number of patients generally peaked at a Saturday night in spring (for BC: May, Saturday, 18:00-19:59; for DC: March, Saturday, 18:00-19:59; for AC: April as the second most (October as the most peaked), Saturday, 20:00-21:59). The primary etiology of the dental trauma was identical in the three periods: falls, followed by sports. The most frequent diagnosis was laceration, followed by tooth avulsion and jaw fracture. Conclusion: Significant differences were not found between the characteristics and patterns of dental trauma in the BC, DC, and AC periods. However, due to the pandemic and social distancing, activities decreased and associated dental trauma-related incidents declined.

임펄스전류에 의한 배전용 ZnO 피뢰기 소자의 열화특성 (Deterioration Characteristics of ZnO Surge Arrester Blocks for Power Distribution Systems Due to Impulse Currents)

  • 이복희;조성철;양순만
    • 조명전기설비학회논문지
    • /
    • 제27권3호
    • /
    • pp.79-86
    • /
    • 2013
  • In order to analyze the electrical performance of ZnO surge arresters stressed by the combined DC and AC voltages that are generated in DC/AC converter systems, the leakage current properties of ZnO surge arrester blocks deteriorated by impulse currents were investigated. The test specimens were deteriorated by the 8/$20{\mu}s$ impulse current of 2.5kA and the leakage currents flowing into the deteriorated zinc oxide(ZnO) arrester blocks subjected to the combined DC and power frequency AC voltages are measured. As a result, the leakage currents flowing through deteriorated ZnO surge arrester blocks were higher than those flowing through the fine ZnO surge arrester blocks and the larger the injection number of 8/$20{\mu}s$ impulse current of 2.5kA is, the greater the leakage current is. The leakage current-voltage curves(I-V curves) of the fine and deteriorated ZnO surge arrester blocks stressed by the combined DC and AC voltages show significant difference in the low conduction region. Also the cross-over phenomenon is observed at the voltage close to the knee of conduction on plots of I-V curves.