• Title/Summary/Keyword: AC-AC direct conversion

Search Result 41, Processing Time 0.024 seconds

A Study on the Hybrid Arc Extinguishing Mechanism of the DC Circuit Breaker (DC 차단기의 하이브리드 아크 소호 기법에 관한 연구)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind and fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC breaker. This study is expect for system and equipment for reliable DC power distribution through the study of the arc extinguish technology for direct current a hybrid arc extinguishing technology with permanent magnets technology.

IdBean: a Java GUI application for conversion of biological identifiers

  • Lee, Sang-Hyuk;Kim, Bum-Jin;Kim, Hyeon-Jin;Lee, Hook-Eun;Yu, Ung-Sik
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • We have developed a biologist-friendly, stand-alone Java GUI application, IdBean, for ID conversion. Our tool integrated most of the widely used ID conversion services that provide programmatic access. It is the first GUI ID conversion application that supports the direct merging as well as comparison of conversion results from multiple ID conversion services without manual effort. This tool will greatly help biologists who handle multiple ID types for the analyses of gene or gene product lists. By referring to multiple conversion services, the number of failed IDs can be reduced. By accessing ID conversion service online, it will potentially provide the most up-to-date conversion results. The application was developed in modular form; however, it can be re-packaged into plug-in form. For the development of a bioinformatics analysis tool, the module can be used as a built-in ID conversion component. It is available at http://neon.gachon.ac.kr/IdBean/.

Comparison of Performance of Brushless DC Drives under Direct Torque Control and PWM Current Control

  • Zhu Z. Q.;Liu Yong;Howe David
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.337-342
    • /
    • 2005
  • Direct torque control (DTC) was originally developed for induction machine drives, and, more recently has been applied to permanent magnet brushless AC (BLAC) drives. In this paper, the performance of DTC controlled brushless DC (BLDC) drives is compared with that of PWM current controlled BLDC drives, both with and without current shaping. Both simulation and experimental results are presented, as well as the analysis of the resulting torque waveforms. It is shown that, in addition to exhibiting a fast torque response, a DTC controlled BLDC drive has a significantly lower low-frequency torque ripple than the PWM current controlled BLDC drive without current shaping, and that it is easier to implement than PWM current control with current shaping.

Control and Operating Characteristics of Three-Phase Matrix Converter with Unity Power Factor by Direct Duty-Ratio Modulation Method (단위 역률을 갖는 직접 시비율 변조방식 3상 매트릭스 컨버터의 제어 및 동작 특성)

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2009
  • This paper investigates operating characteristics of three-phase matrix converter with unity input power factor by direct duty-ratio pulse-width modulation in the case of balanced and unbalanced load. It can be found from the system analysis that (1) The control algorithm for unity power factor is not related to the variables of load sides but the input voltages, (2) With the balanced three-phase load except for the pure reactive load, the unity input power factor can be achieved, (3) In the case of the unbalanced linear load, the equivalent input characteristics of the matrix converter can be seen like the nonlinear resister, (4) When the input frequency and the output frequency have the specific relationship, each input phases have the same sharing of the average power. The feasibility and validity of the analysis were verified by simulation and experimental results.

The Development of AC Motor Control System Using DIP-IPM (DIP-IPM을 이용한 전동기 제어시스템 개발)

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Kim, Dong-Hee;Choi, Ho-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.232-234
    • /
    • 2002
  • Due to development of power electronics technology, power conversion system are tend to small size, easy to use and light weight. Especially motor control system have increased concerns and interests about IPM(Intelligent Power Module) inverter, which contains protection circuit, drive circuit and power devices. So, we manufactured 3-phase inverter using DIP-IPM(Dual in-line package IPM) PS21245- E(1.5 Kw) made by MITSUBISHI Electric. Some of these features include -HVIC to Provide level shifting and gate drive for high-side IGBTs. The interface circuit between pwm controller and DIP-IPM can made by direct connection. In order to validate dynamic performance of the proposed system, the actual experiment worked out at wide speed range. The developed system is shown as a good dynamic characteristics.

  • PDF

Direct Single-stage Power Converter with Power Factor Improvement for Switched Mode Power Supply

  • Kalpana, R.;Singh, Bhim;Bhuvaneswari, G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.468-476
    • /
    • 2010
  • This paper presents a direct single-stage power converter using single-phase isolated full-bridge converter modules, with inherent power factor correction (PFC) for a 12 kW switched mode power supply (SMPS). The advantages of the proposed converter are its simple control strategy, reduction in number of conversion stage, low input line current harmonics, and improvement in power factor. Analysis of the single-stage converter is carried out in continuous conduction mode of operation. Steady-state analysis of the proposed converter is conducted to obtain converter parameters. A systematic design procedure is also presented for a 12k W converter with a design example. The effect of load variation on SMPS is also studied in order to demonstrate the effectiveness of the proposed converter for the complete range of load conditions. A set of power quality indices on input ac mains for an SMPS fed from a single-stage converter is also presented for easy comparison of their performance.

Development of the High Input Voltage Self-Power for LVDC

  • Kim, Kuk-Hyeon;Kim, Soo-Yeon;Choi, Eun-Kyung;HwangBo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.387-395
    • /
    • 2021
  • Distributed resources such as renewable energy sources and ESS are connected to the low voltage direct current(LVDC) distribution network through the power conversion system(PCS). Control power is required for the operation of the PCS. In general, controller power is supplied from AC power or DC power through switch mode power supply(SMPS). However, the conventional SMPS has a low input voltage, so development and research on high input voltage self-power suitable for LVDC is insufficient. In this paper, to develop Self-Power that can be used for LVDC, the characteristics of the conventional topology are analyzed, and a series-input single-output flyback converter using a flux-sharing transformer for high voltage is designed. The high input voltage Self-Power was designed in the DCM(discontinuous current mode) to reduce the switching loss and solve the problem of current dissipation. In addition, since it operates even at low input voltage, it can be applied to many applications as well as LVDC. The validity of the proposed high input voltage self-power is verified through experiments.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)

The Study on the Temperature Compensation of Ultrasonic Motor for Robot Actuator Using Fuzzy Controller (퍼지제어기를 이용한 로보트 액츄에이터용 초음파 모터의 온도 보상에 관한 연구)

  • 차인수;유권종;백형래;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.165-172
    • /
    • 1998
  • The electromechanical energy conversion conditioning and processing implementation in USM direct motion control system is generally divided into two power stages: the two-phase high-frequency ac power inversion stage for driving piezoelectric ceramic PZT transducer array off the USM stator and the mechanical thrust power conversion stage based on the frictional force between the piezo electric stator array and the rotary slider of the USM. However, the dynamic and steady-state mathematical modeling of the USM is extremely default from a theoretical point of view because it contains many complicated an nonlinear characteristics dependant on operation temperature. In +2$0^{\circ}C$~3$0^{\circ}C$, the operating characteristics of the USM has represented normal condition. But the other temperature, it has abnormal condition so that driving frequency, current and motor speed will be down. The recent USM has controller without temperature compensation. This study represents the fuzzy controller for speed compensation according to operating temperature by driving frequency.

Development of 1.2[kW]Class Fuel Cell Power Conversion System (1.2[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young;Kim, Chil-Ryong;Cho, Man-Chul;Kim, Jung-Do;Yoon, Young-Byun;Kim, Hong-Sin;Park, Do-Hyung;Ha, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-125
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, The fuel cell system which it proposes DC-DC the efficient converter used PWM the phase transient control law and it depended to portion resonance ZVS switching, loss peek voltage and electric current of realization under make schedule, switching frequency anger and the switch reduction. And mind benevolence it sprouted 2 in stop circuit and it added and a direct current voltage and the electric current where the ingredient is reduced in load side ripple stable under make whom it will be able to supply. Besides the efficiency of 92[%]is obtained over the wide output voltage regulation ranges and load variations. Also, under make over together the result leads simulation and test, the propriety confirmation.