• 제목/요약/키워드: AC losses

검색결과 273건 처리시간 0.023초

초전도 변압기 교류 손실 해석 (Analysis of AC Losses in HIS Transformer with Double Pancake Windings)

  • 김종태;김우석;김성훈;최경달;주형길;홍계원;한진호;이희균
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권1호
    • /
    • pp.17-21
    • /
    • 2005
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is the essential part in the electrical power system. But unfortunately, the transformer is the worst HTS device concerning AC loss because of very large magnetization loss due to high magnetic field applied to the HTS wire. We calculated the magnetization losses in HTS pancake windings for transformer according to the operating temperature. Two kinds of arrangement of HTS pancake windings were adopted for calculation of AC losses of a shell type transformer, and the analysis results were presented and discussed.

고온초전도 적층선재의 특성과 적층선재로 제작한 팬케이크 권선 손실 (Characteristics of the HTS Stacked Tapes and AC Losses of the Multi-Stacked Pancake Coil)

  • 이승욱;임형우;차귀수;이지광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.658-663
    • /
    • 2004
  • According to the improvement of the HTS wires performance, several tapes of HTS superconducting machines are being developed. Stacked HTS tapes are used as conductor that can flow high current for the HTS power machines. To develop the HTS power machines, the critical current characteristics of a stacked HTS tapes in external filed and AC losses should be examined. In this paper, we present characteristic of the stacked HTS tapes and AC losses of HTS pancake windings with stacked tapes. AC loss of the pancake winding were measured and compared with the calculated loss by using AC loss data of the stacked samples and the magnetic flux density in the HTS winding under operating conditions. We can see that measured results generally agree well with the calculated results by using AC loss data of 4-stacked sample.

Analysis of AC losses in HTS coils by temperature variations

  • Kim, Yungil;Lee, Ji-Kwang;Lee, Seyeon;Kim, Woo-Seok;Lee, Siyoung;Choi, Kyeongdal
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.50-54
    • /
    • 2018
  • We analyzed the temperature dependency of the AC losses in high temperature superconducting (HTS) coils. In the case of a short sample of an HTS tape, the magnetization loss at 4.2 K could be higher than the one at 77 K for a same transport current. It happens when the perpendicular magnetic field is above a certain magnitude. The AC loss characteristics of solenoidal coils have been analyzed at the temperatures of 65 K and 77 K. They were categorized by the aspect ratios. The operating current of a solenoid was normally set about 70 % of the critical current. An HTS solenoid with the same operating current of 77 K causes larger AC losses at 65 K in the most cases of the HTS solenoids. We also analyzed the AC loss characteristics due to the temperature variations for three types of superconducting magnetic energy storages. Two of them were solenoidal types and the other was toroidal type. The results showed the tendency for the coils to have higher AC losses at lower temperature with the same operating currents and scenarios.

동기 정류기를 이용한 고효율 역률보상형 AC/DC 컨버터 (High Efficiency PFC AC/DC Converter with Synchronous Rectifier)

  • 박한웅
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.266-269
    • /
    • 2000
  • This paper presents a novel single-stage unity power factor converter which features the reduced switching losses by zero-voltage switching and zero-current switching (ZVZCS). Hence the turn-on and turn-off losses of switches are sufficiently reduced. And the reduced conduction losses are achieved by the elimination of one leg of front-end rectifier. And low on-resistance MOSFETs (Synchronous Rectifier) are used in the rectifier at the secondary side of high frequency transformer instead of diodes. Theoretical analysis simulated results of a AC to DC 150W(5V, 30A) converter are presented.

  • PDF

Comparison of Magnetic Field and AC Losses in Solenoid Coil and Pancake Coil with HTS tape

  • Park, Myungjin;Lee, Kwangyoun;Jungwook Sim;Gueesoo Cha;Lee, Jikwang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.97-101
    • /
    • 2003
  • When HTS tapes are used in power application, they are used by winding form, such as, a pancake and a solenoid. When AC current is applied to the coil, Ac magnetic field is generated in winding. This AC magnetic field acts as an external magnetic field and makes loss. In this paper the radial magnetic field component ($B_r$) and the axial magnetic field component ($B_z$) in a pancake and a solenoid were calculated by numerical analysis method and compare with measured value. AC losses of a short sample were calculated by Norris equation and n numerical analysis based on Brandt equation. AC losses of the pancake coil and the solenoid coil were also calculated.

전기적 측정법을 사용한 팬케이크 코일에서의 교류손실 측정 (AC Losses of the HTS Pancake Coil by Using Electric Method)

  • 이승욱;임형우;최명섭;이희준;차귀수;이지광
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.37-40
    • /
    • 2003
  • This paper presents calculated and measured AC losses of the HTS pancake coil. Magnetic field in the HTS coil under operating conditions was calculated by FEM. Results of measured ac loss in 4-stacked short sample were used in the AC loss calculation. Various methods, such as, electric method, calorimetric method, wattmeter method, were used to measure the AC loss.

  • PDF

고온초전도 적층선재의 손실과 적층선재로 제작한 팬케이크 권선의 손실 (AC Losses of the Multi-stacked HTS tapes and Pancake Coil)

  • 이승욱;김용섭;이희준;차귀수;이지광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.776-778
    • /
    • 2004
  • In this paper, we present effect of the stacked HTS tapes. AC losses of HTS pancake windings with stacked tapes are shown. Magnetic flux density in the HTS winding under operating conditions was calculated by FEM. AC loss of the pancake winding were measured and compared with the calculated loss by using AC losses of the stacked samples. Test results show that measured results generally agreed well with the calculated value by using AC loss of 4-stacked sample data.

  • PDF

능동형 전압제어를 통한 교류 전기철도 급전망에 대한 전력손실 분석 (A Power Losses Analysis of AC Railway Power Feeding Network using Adaptive Voltage Control)

  • 정호성;김형철;신승권;김진호;윤기용;조용현
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1621-1627
    • /
    • 2013
  • This paper compares power losses between voltage controlled before and after using power conversion device in AC feeding system. For this purpose we present voltage control procedures and criteria and model high speed line and train using PSCAD/EMTDC to compare power losses in various feeding condition. Power losses of the simulation result in power control before and after in single point feeding system was reduced maximum 0.37 MW(23.8 %) and average 0.23 MW(20.5 %) when one vehicle load operates maximum load condition. When three vehicles operate maximum load condition in one feeder section, power losses after voltage control was reduced 1.03 MW(49.5%) compared to before voltage control. And, power loss of parallel feeding system is reduced the average 0.08 MW(7.2 %) compared to the single feeding system. In conclusion, adaptive voltage control method using power conversion device can reduce power losses compared with existing method.

임계전류 및 전류분포가 다중테이프 초전도도체의 교류손실 측정에 미치는 영향 (Influence of Tape's Critical Currents and Current Distributions on AC Loss Measurement in a Multi-tape Conductor)

  • 류경우;마용호;최병주;황시돌
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권1호
    • /
    • pp.47-50
    • /
    • 2005
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables, which consist of a number of lli 2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. In this work we have prepared a multi-tape conductor composed of Bi-2223 tapes. The at losses of the conductor have experimentally investigated. The loss tests indicate that the effect of tapes critical currents on AC loss measurement in the multi tape conductor is negligible only if currents in the tapes flow uniformly Moreover, the measured tosses of the conductor are in good agreement with the sum of the transport losses in the tapes. However, in the case of non-uniform current distributions, the measured AC losses considerably depend on the current distribution parameter of the positioning of a voltage lead. Thus special cautions should be needed for the measurement of the true AC losses in the short power cable samples.

단층 초전도케이블 샘플에서 교류손실의 수치해석에 대한 연구 (A Study on Numerical Analysis of the AC Loss in a Single-layer Superconducting Cable Sample)

  • 이주영;마용호;류경우;황시돌
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.606-611
    • /
    • 2009
  • AC loss is one of the important factors for commercialization of a high temperature superconducting (HTS) cable from an economic point of view. But AC loss characteristics of the HTS-cable are not elucidated completely because of its complex structure. As an earlier stage of analyzing the AC loss in the 22.9 kV/50 MVA, 100m HTS-cable system of Korea Electric Power Corporation (KEPCO) which is now in collaboration with us, a two-dimensional (2D) numerical model, which takes into account the nonlinear conductivity properties of a high temperature superconductor, has been developed. In order to examine our 2D model, we have prepared several single-layer cable samples whose AC losses are sufficiently reliable due to their simple structure. The AC losses of the samples were experimentally investigated and then compared with our 2D model. The results show that the numerically calculated AC losses are not in good agreement with the measured ones for the cylindrical cable and deca-cable samples with low critical current density. However, the numerically calculated and measured AC losses are relatively in good agreement for the deca-cable and hex-cable samples with high critical current density, although the difference between these two loss data in the deca-cable sample tends to increase in the low current region.