• Title/Summary/Keyword: AC capacitor

Search Result 355, Processing Time 0.036 seconds

Control of Linear Compressor System Using Virtual AC Capacitor

  • Park, Shin-Hyun;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2317-2323
    • /
    • 2017
  • Recently, linear compressors of cooling systems such as refrigerators, which have a free piston driven by a linear motor, have attracted much attention because of their high efficiency. For structural reasons, linear compressors applied in refrigerators should use an AC capacitor to ensure stable control. However, AC capacitors are expensive and bulky. In this paper, we propose a new method to realize stable control without a real AC capacitor by implementing a virtual AC capacitor with software. To realize a virtual AC capacitor, a pure integral is calculated. Nonetheless, if an offset current exists, the calculation may diverge to infinity. To solve this problem, a high-pass filter is applied and the compensation for the phase angle and magnitude are realized with a new method. Finally, a virtual AC capacitor enables variable frequency operations. Hence, in case of a lack of voltage, we can compensate by running the linear compressor in high-frequency operations. To improve efficiency, we may optimize the operation frequency. The validity of a virtual AC capacitor has been verified through simulations and experimental results.

A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control (비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

Capacitance Estimation of DC-Link Capacitors of Three-phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 DC-Link 커패시터 용량 추정)

  • Lee Kang-Ju;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.399-402
    • /
    • 2002
  • In this paper, the novel method is proposed to measure the capacitance of the dc link capacitor Advantage of the method is not to separate capacitor from 3-phase AC/DC/AC converters. In the proposed method, a specific low frequency current is injected to oscillate the voltage of dc capacitor at no load condition. The capacitance of dc capacitor is calculated with the effective values of this ripple voltage and current. The validity of the proposed method is confirmed by PSIM simulation.

  • PDF

DC-Link Capacitance Estimation using Support Vector Regression in AC/DC/AC PWM Converters (SVR을 이용한 AC/DC/AC PWM 컨버터의 직류링크 커패시턴스 추정)

  • Ahmed G. Abo-Khalil;Jang, Jeong-Ik;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.81-87
    • /
    • 2007
  • This paper proposes a new capacitance estimation scheme for a DC-link capacitor in a three-phase AC/DC/AC PWM converter. A controlled AC voltage with a lower frequency than the line frequency is injected into the DC-link voltage, which then causes AC power ripples at the DC side. By extracting the AC voltage and power components on the DC output side using digital filters, the capacitance can then be calculated using the Support Vector Regression (SVR). By training of SVR, a function which relates a given input (capacitor's power) and its corresponding output (capacitance value) can be derived. This function is used to predict outputs for given inputs that are not included in the training set. The proposed method does not require the information of DC-link current and can be simply implemented with only software and no additional hardware. Experimental results confirm that the estimation error is less than 0.16%.

New Control Seheme for AC-DC-AC Converters without DC Link Electrolytic Capacitor (직류링크 전해커패시터 없는 AC-DC-AC 컨버터 재어에 관한 연구)

  • 김준석;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.397-408
    • /
    • 1994
  • In this paper, a novel concept for a static three-phase to three-phase power converter for an AC drive with a unity power factor and reduced harmonics on the utility line is presented. The power circuit consists of two back-to-back connected six-pulse bridges having only a $\mu$F ceramic capacitor in the DC link. By controlling the active kpower balance between two bridges, the DC link voltage can be maintained within 20V deviation from the nominal value with the small ceramic capacitors regardless of the load variation even in the unbalanced source condition.

  • PDF

Synthesis and Electrochemical Characteristics of Spherical Li4Ti5O12/CNT Composite Materials for Hybrid Capacitors

  • Yang, Joeng-Jin;Kim, Yu-Ri;Jeong, Moon-Gook;Yuk, Yong-Jae;Kim, Han-Joo;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 2015
  • Spherical Li4Ti5O12 and Li4Ti5O12 carbon nanotube (CNT) composites were synthesized using a colloid system. The electrochemical properties of the composites were thoroughly examined to determine their applicability as hybrid capacitor anodes. The electrical conductivity of the spherical Li4Ti5O12-CNT composite was improved over that of the spherical Li4Ti5O12 composite. The synthesized composites were utilized as the anode of a hybrid capacitor, which was assembled with an activated carbon (AC) positive electrode. The CNTs attached on the spherical Li4Ti5O12 particles contributed to a 51% reduction of the equivalent series of resistance of the Li4Ti5O12-CNTs/AC hybrid capacitor compared to the Li4Ti5O12/AC hybrid capacitor. Moreover, the Li4Ti5O12-CNTs/AC hybrid capacitor showed a larger capacitance than the Li4Ti5O12/AC hybrid capacitor; specifically, the Li4Ti5O12-CNT/AC hybrid capacitor showed 1.6 times greater capacitance at 40 cycles with a 10 mA cm−2 loading current density.

A Study on CCC(Capacitor Commutated Converter) and CSCC(Controlled Series Capacitor Converter) for HVDC System

  • Kim Chan-Ki;Kho Bong-Un;Lee Jong-Min;Chae Young-Mu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.523-528
    • /
    • 2001
  • This paper deals with two non-conventional HVDC system, that are, the Capacitor Commutated Converter (CCC) in which series capacitors are included between the converter transformer and the valves, and the Controller Series Capacitor Converter (CSCC), based on more conventional topology, in which series capacitors are inserted between the AC filter bus and the AC network. The simulation waveforms show that if these compare to conventional HVDC, these HVDC systems have many advantages in steady-state and transient performance.

  • PDF

Optimal Design of a Damped Input Filter Based on a Genetic Algorithm for an Electrolytic Capacitor-less Converter

  • Dehkordi, Behzad Mirzaeian;Yoo, Anno;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.418-429
    • /
    • 2009
  • In this paper an optimal damped input filter is designed based on a Genetic Algorithm (GA) for an electrolytic capacitor-less AC-AC converter. Sufficient passive damping and minimum losses in passive damping elements, minimization of the filter output impedance at the filter cut-off frequency, minimization of the DC-link voltage and input current fluctuations, and minimization of the filter costs are the main objectives in the multi-objective optimization of the input filter. The proposed filter has been validated experimentally using an induction motor drive system employing an electrolytic capacitor-less AC-AC converter.

Analysis and Modeling of AC-AC Switched Capacitor Converters

  • Cai, Hui;Bao, Liting;Guo, Qian;Wang, Ying;Chen, Weimin
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.24-33
    • /
    • 2019
  • A new modeling method for AC-AC switched capacitor converters (SCCs) is introduced in this study. The proposed analytical method aims to accurately describe the input-output characteristics of AC-AC SCCs and establish a mathematical model for static voltage conversion ratio and equivalent resistance, which are key performance metrics for SCCs. A quantitative analysis of converter regulation capability is addressed on the basis of the modeling method. In this analysis, the effects of the control parameters and individual components on SCCs are illustrated extensively. Component stresses, such as the peak value and transient variation of the voltage/current of the converter, are also presented. The effectiveness of the proposed method is verified by comparing it with the existing modeling method and applying it to an AC-AC SCC with a conversion ratio of three. Two 1 kW prototypes are built in a laboratory, and their experimental results exhibit good agreement with the theoretical analysis.