• Title/Summary/Keyword: AC breakdown voltage

Search Result 248, Processing Time 0.036 seconds

AC Breakdown Analysis by Epoxy Thickness in Composite-Insulation (복합절연물내의 에폭시 두께에 따른 AC 절연파괴 분석)

  • Jung, Hae-Eun;Yun, Jae-Hun;Kim, Byoung-Chul;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.468-469
    • /
    • 2007
  • $SF_6$ gas used widely as insulating component in electric power industry has excellent in insulation and arc extinguishing performance in gas-insulated switchgear. However, the concern about eco-friendly alternative gas is currently rising, because $SF_6$ gas is one of the main greenhouse gases. As one of the study for $SF_6$ free technology, composite-insulation technology is focused in this paper. To analyze the influence by epoxy thickness change, the composite-insulation composed of dry-air and epoxy was used in this paper. To analyze AC breakdown by the epoxy thickness, needle-plane electrode was used and needle was molded by epoxy. Under the gas pressure ranged from 0.1 to 0.6MPa, the breakdown voltage of dry-air were measured in AC electric field. The data of composite-insulation were acquired by changing the thickness of epoxy used in each composite-insulation under the same condition.

  • PDF

Analysis on the electrical degradation characteristics of 2G HTS wires with respect to the electrical breakdown voltages

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.37-40
    • /
    • 2015
  • Recently, the electrical insulation design for electrical apparatuses is important to cope with the tendency of high voltage. The degradation characteristics of a superconducting coil due to an electrical breakdown should be considered to design a high voltage superconducting coil. In this paper, the degradation characteristics of 2G high temperature superconducting (HTS) wires are studied with respect to electrical breakdown tests. To analyze the dependency of the degradation characteristics of 2G HTS wires, the electrical breakdown tests are performed with AC(alternating current) and DC(direct current) voltage. All tests are performed by applying various magnitudes of AC and DC breakdown voltages. To verify the degradation characteristics of 2G HTS wires, the tests are performed with various 2G HTS wires with respect to stabilizer materials. The degradation characteristics of 2G HTS wires, such as Ic(critical current) and index number are measured by performing electrical breakdown tests. It is found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it is concluded that the degradation characteristics of 2G HTS wires are affected by the stabilizer material and applied voltages. The cross-sectional view of 2G HTS wires is observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS wires are concerned with hardness and electrical conductivity of stabilizer layers.

AC Breakdown Voltage Characteristics of SF6/CF4 in Uniform field (평등전계에서 SF6/CF4 혼합가스의 AC절연내력 특성)

  • Hwang, Chung-Ho;Park, Woo-Shin;Kim, Nam-Ryul;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.381-387
    • /
    • 2007
  • The excellent dielectric properties of $SF_6$(sulfur hexafluoride) have lead to its wide range of application in the field of high voltage insulation. Because there has been some recent concern regarding the environmental impacts of $SF_6$ binary gas mixtures, with $SF_6$ as the main component, have been the subject of active research. Scientists have long been interested in the possible use of gaseous fluorocarbons, including $CF_4$ (Carton Tetrafluoride), in high voltage applications due to their inert character and high dielectric strength. This paper presents experimental results concerning the AC breakdown characteristics lot various mixtures of $SF_6/CF_4$ in a test chamber and 25.8 kV GIS (Gas Insulation Switchgear) at practical pressures (0.1-04 MPa) and gap lengths (0.5 mm, 1 mm) in a test chamber. In the result, it was observed that an increase in the dielectric strength is attained through the addition of $SF_6$ to $CF_4$. It is possible to make an environment friendly gas insulation material while maintaining the dielectric strength by combing $SF_6$ and $CF_4$ which generates a lower level of the "global warming" effect.

Analysis of Aging Insulation Characteristics of 3.3[kV] Class Induction Motor with AC Breakdown Test (절연파괴시험법을 이용한 3.3[kV] 유도전동기의 절연물 열화특성 분석)

  • Lee, Ju;Kim, Hyun-Il;Kim, Youn-Hyun;Son, Yeoung-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.141-149
    • /
    • 2007
  • This paper introduce to improve the reliability of the expected service life and the insulation condition evaluation of the high voltage induction motors by assessing, comparing and analyzing the correlation between the dielectric properties of the off-line insulation diagnostic test and dielectric strength on the insulation breakdown test. The insulation diagnostic tests include insulation resistance, polarization index(P.I.), dissipation factor($tan{\delta}$), maximum partial discharges($Q_{max}$) and AC breakdown test. This study evaluated the correlation between insulation diagnostic test and AC breakdown test for stator winding of high voltage induction motor. On the basis of these test results, we expect that this study can be used for effectively assessing the results of insulation diagnostic tests for similar class induction motors in service at industrial field.

Dynamic Electrical Breakdown Characteristics of Cryogenic Liquid (극저온 액체의 동적 절연파괴 특성)

  • 김상현;김현희;김영석;정종만;정순용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.321-326
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen($LN_2$) taking into consideration for application of high $T_c$ superconductor is very important. Also $LN_2$ will be used as both coolant and insulator in superconducting generator. In this paper, we investigated ac breakdown characteristics of cryogenic nitrogen gas above a $LN_2$ for rod-to plane electrode configuration. As result the breakdown mechanism of $LN_2$is dependence on bubble effect. And breakdown voltage is a ratio on bubble s size but electrodes arrangement is to make no difference. The breakdown voltage decreases slightly with increasing flow velocity, it again decreases abruptly with increasing flow velocity. These results were interpreted as the within pressure of rod electrode and Maxwell force.

  • PDF

Inprovenent of the Electrical Characteristics of Transformer Oil dissolved with $SF_6 Gas$ ($SF_6 Gas$를 용해시킨 변압기 절연유의 고주파 전기 특성의 향상)

  • Jeon, Chung-Saeng
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.312-318
    • /
    • 1994
  • In this paper the breakdown and dielectric characteristics of purified transformer oil dissolved with $SF_6$ Gas are investigated with a few decade MHz frequency voltage. The results are as follows. 1) High frequency current is a approximately proportional to the square root of high frequency voltage in purified transformer oil. 2) As frequency increase breakdown voltage decrease inversely proportional to the square root of frequency and the high frequency breakdown voltage is lower about 35 percentage than that of AC 3) The breakdown voltage of high frequency has a little increase with the pressure increase of dissolved $SF_6$, Air and Ar Gas. 4) As voltage freguency increases the value of the dielectric loss tangent has increased almost exponentially and the dielectric constant ($\varepsilon$) has tended to decrease with a slope[0.6% MHz]. 5) When dissolved with $SF_6$ Gas, oil electrical characteristics has more increased about 25% than in Air or Ar gas with high voltage frequency.

  • PDF

Characteristics of Insulation Diagnostic in Traction Motor Stator Windings (견인전동기 고정자 권선의 절연진단 특성)

  • Kim, Hee-Dong;Kim, Chung-Hyo;Park, Young;Park, Hyun-June
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.336-338
    • /
    • 2006
  • Diagnostic tests are used to evaluate the insulation condition of stator windings in traction motor. These tests included ac current, tan delta and maximum partial discharge. The insulation condition of stator windings was assessed by three test items. The stator windings of traction motor were m good condition. After completing the diagnostic tests, the stator windings of traction motors were subjected to gradually increasing ac voltage, until the insulation punctured. No.5 stator windings failed near rated voltage of 18.9 kV. The breakdown voltage of No.1 stator windings was 13.0. The failure was located m a line-end coil at the exit from the core slot.

  • PDF

The Development of Insulating Jackets for protection of Live-line workers in KEPCO (한국전력에서 활선작업시 착용하는 절연복 개발)

  • Yoo, Ho-Keun;Kim, Woo-Sung;Lee, Jae-Young;Cho, Kye-Cheol;An, Chul-Kyung;Choi, Myeong-Ho;Kim, Sang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.388-389
    • /
    • 2007
  • Objective of the study is development of 23kV insulating jackets for protection of workers from electrical shock. The breakdown voltage of Ethylene-VinylAcetate copolymers(EVA) films in insulating oil were measured. Insulating jackets were made by the high frequency welding machine, and withstanding voltage test of these were measured. For breakdown voltage at AC 30kV, the number of EVA film with $105{\pm}5{\mu}m$ thickness was 4$\sim$5pieces. When AC 30kV during 3 minutes supplied on the insulating jackets, those were keep on the good quality.

  • PDF

Experimental Study on the Dielectric Breakdown Voltage with the Addition of Magnetic Nanoparticles in a Transformer Oil (변압기 오일에 자성나노입자 첨가에 따른 절연파괴전압 특성변화에 관한 실험적 연구)

  • Seo, Hyun-Seok;Lee, Won-Ho;Lee, Se-Hee;Lee, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1538-1539
    • /
    • 2011
  • In this study, we have investigated the dielectric breakdown by measuring AC (60Hz) breakdown strength of the fluids in accordance with IEC 156 standard and have compared the results with references. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 [kV] with the gap distance of 1.5mm between electrodes. In case of our transformer oil based magnetic fluids with 0.1% < ${\Phi}$(volume concentration of magnetic particles) <0.6%, the dielectric breakdown voltage shows above 30 [kV], which is 2.5 times higher than that of pure transformer oil. It can be explained by the changed ionization process by adding nanoparticles in pure transformer oil, which is due to trapped fast electrons and slow negative nanoparticles. Moreover, in case of the fluid with applied magnetic field, the dielectric breakdown voltage increases above 40 [kV], which is 3.3 times higher than that of pure transformer oil.

  • PDF

The Influence of Gap Length and Tip Radius on Breakdown of Electrical Insulating Oil (전기절연유의 절연파괴에 미치는 전극간격 및 곡률반경의 영향)

  • Kang, Seong-Hwa;Chae, Hong-In;Lee, Jong-Pil;Lim, Kee-Joe
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.56-59
    • /
    • 2004
  • In this paper, we investigated the influence of gap length and tip radius on breakdown of mineral based insulation oil. Applied voltages were DC and AC voltage. Electrode system was needle-plane structure. The tip radius of needle electrode was 5, 10, 20 and 25${\mu}m$, respectively. We measured breakdown voltage for each of tip radius with increasing electrode gap, 2mm to 12mm. Electric breakdown strength at tip was calculated using Mason's equation contained geometric figure. As gap length increased, breakdown strength increased linearly. But, as tip radius of needle increased, breakdown strength decreased exponentially. It can be explained by the phenomenon that electron is easily injected, as tip radius increases, and effective work function decreases. When appling DC voltage, breakdown strength was higher when polarity of needle was negative than positive. It is because of the space charge effect in accordance with the influence of liquid motion.