• Title/Summary/Keyword: AC breakdown strength

Search Result 136, Processing Time 0.021 seconds

Electrical AC Insulation Breakdown Characteristics of Various Epoxy / Heterogeneous Inorganic Mixed Composite (여러 종류의 에폭시/이종무기물 혼합 콤포지트의 전기적 교류 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1463-1470
    • /
    • 2018
  • In this study, 20 types of samples were prepared by mixing different kinds of inorganic materials to develop insulation materials for epoxy - based GIS substation equipment used under high voltage environmentally friendly insulation gas. One of the electrical characteristics, AC insulation breakdown experiment was performed. As mixing ratio of mixed heterogeneous inorganic materials, the dielectric breakdown strength was increased with increasing filler ratio of micro silica, micro silica : micro Alumina, 1:9, 3:7, 5:5, 7:3, 9:1, and decreased as the filling amount of micro alumina increased. The AC insulation breakdown characteristics were the best when the composition ratio was 9:1. The higher the content of silica, the better the interfacial properties, and the larger the alumina content ratio, the worse the interfacial properties.

A Study on the AC Interfacial Breakdown Properties of the Interface between Epoxy/EPDM with Variation of the Spread Oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연파괴 특성에 관한 연구)

  • Bae, Deok-Gwon;Jeong, Il-Hyeong;O, Jae-Han;Park, U-Hyeon;Lee, Gi-Sik;Kim, Chung-Hyeok;Lee, Jun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.445-450
    • /
    • 2000
  • Many successful developments and microscopic studies have been made on the high quality insulating materials. However, a little attention have given to the macroscopic interface in HV(High Voltage) insulating systems. In this study, AC interfacial breakdown strength and V-t characteristic of the interface between Epoxy/EPDM(ethylene propylene diene terpolymer) are investigated. Electrode system is designed to reduce the charges from electrodes and to have the tangential potentials along the interface between Epoxy/EPDM by FEM(finite elements method). The AC breakdown strength is observed when HV is given to the interface. It is shown that AC interfacial breakdown strength is improved by increasing interfacial pressure and oiling. In particular, it was saturated at certain interfacial pressure level. V-t characteristic is able to extend to the life time of the interface between Epoxy/EPDM. Oiling also plays a good roll in prolongation of the life time.

  • PDF

The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina (표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

AC Electrical Breakdown Characteristics of an Epoxy/Mica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.200-203
    • /
    • 2012
  • Epoxy/mica composite was synthesized, in order to use it as an impregnation resin in a vacuum pressure impregnation (VPI) process, for manufacturing a high voltage rotary machine. The average particle size of the mica was 5~7 ${\mu}m$ and its content was 0, 20, 30 and 40 wt%. A plasticizer or a low molecular aliphatic epoxy was also used, to decrease the viscosity of the composite. The AC electrical breakdown strength was estimated in sphere-to-sphere electrodes, and the electrical breakdown data were estimated by Weibull statistical analysis. The electrical breakdown strength became higher with the addition of mica; and that of the system with 20 wt% mica was highest. The electrical breakdown strength of the system with an aliphatic epoxy was higher than that of the system with a, plasticizer.

SLI, AC Breakdown Voltage Characteristics of $SF_6/CF_4$ Mixtures Gas in Nonuniform Field (불평등전계에서 $SF_6/CF_4$ 혼합 가스의 SLI, AC 절연내력 특성)

  • Hwang, Cheong-Ho;Sung, Heo-Gyung;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.245-251
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field was performed. The experiments were carried out under AC voltage and standard lightning impulse(SLI) voltage. Breakdown characteristics were investigated for $SF_6/CF_4$ mixtures when AC voltages and standard lighting impulse voltage was applied in a needle-plane. The needle-plane electrode whose gap distance was 3 mm were used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field may be influenced by defects like needle-shaped protrusions. In case of slowly rising SLI voltage and AC voltage it is enhanced by corona-stabilization. This phenomena caused by the ion drift during streamer development and the resulting space-charge is investigated. In non-uniform field under negative SLI voltage the breakdown voltage was increase linearly but under positive SLI voltage the breakdown voltage increase non-linearly. The breakdown voltage in needle-plane electrode displayed N shape characteristics for increasing the content of $SF_6$ at AC voltage. $SF_6/CF_4$ mixture has good dielectric strength and arc-extinguishing properties than pure SF6. This paper presents experimental results on breakdown characteristics for various mixtures of $SF_6/CF_4$ at practical pressures. We could make an environment friendly gas insulation material with maintaining dielectric strength by combing $SF_6\;and\;CF_4$ which generates a lower lever of the global warming effect.

Electrical Properties of Insulating Oils for Diagnostic X-ray Tube (진단용 X 선관 절연유의 전기적 특성)

  • Kim, K.C.;Lee, I.S.;Baik, G.M.;Kim, D.H.;Kim, W.G.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.597-600
    • /
    • 2001
  • In order to investigate the electrical properties of X-ray tube oils for insulating and cooling, the breakdown characteristics in temperature range of $20\sim100[^{\circ}C]$, that of AC breakdown in 0.5~2.5[mm] of gap length, we are made researches. The classification for the physical properties of oil for X-ray tube by FTIR and H-NMR experiments was confirmed to type of mineral oils. As for the dependance of breakdown characteristics due to electrode gap length, breakdown voltage was found nearly uniform by impurity effect according to the increase of gap. As a result the characteristics for AC breakdown, the dielectric strength was increased to $90[^{\circ}C]$ but decreased over $90[^{\circ}C]$ in the temperature range.

  • PDF

Electrical Properties of Insulating Oils for Diagnostic X-ray Tube (진단용 X 선관 절연유의 전기적 특성)

  • 김건중;이인성;백금문;김두호;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.597-600
    • /
    • 2001
  • In order to investigate the electrical properties of X-ray tube oils for insulating and cooling, the breakdown characteristics in temperature range of 20∼100[$^{\circ}C$], that of AC breakdown in 0.5∼2.5(mm) of gap length, we are made researches. The classification for the physical properties of oil for X-ray tube by FTIR and $^1$H-NMR experiments was confirmed to type of mineral oils. As for the dependance of breakdown characteristics due to electrode gap length, breakdown voltage was found nearly uniform by impurity effect according to the increase of gap. As a result the characteristics for AC breakdown, the dielectric strength was increased to 90[$^{\circ}C$] but decreased over 90[$^{\circ}C$] in the temperature range.

  • PDF

A Study on the AC Interfacial Breakdown Properities of the Interface between Epoxy/EPDM with the variation of spreaded oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연 파괴 특성에 관한 연구)

  • Bae, Duck-Kweon;Lee, Su-Kil;Jung, Il-Hyung;Lee, Jun-Eung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.897-899
    • /
    • 1999
  • In this paper, the interfacial dielectric breakdown phenomenon of interface between Epoxy/EPDM (ethylene propylene diene terpolymer) was discussed, which affects stability of insulation system of power delivery devices. Specimen structure was designed by using MAGSOFT's FLUX2D based on the finite elements method. Design concepts is to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the Epoxy/EPDM interface. AC interfacial breakdown phenomenon of was investigated by variation of interfacial conditions oil and temperature which are supposed to have influence on the interfacial breakdown strength. Interfacial breakdown strength was improved by spreading oil over interfacial surface. The decreasing ratio of the AC interfacial breakdown strength in non-oiled specimens was increased by the temperature rising and its of oiled specimens was not affected by temperature.

  • PDF

Breakdown Characteristic of Transformer Oil Depending on Tip Radius (침전극 곡률 반경에 따른 절연유의 절연파괴 특성)

  • Lee, J.S.;Jeong, S.H.;Lee, H.K.;Lim, K.J.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1478-1480
    • /
    • 1997
  • We investigated the breakdown characteristic of mineral oil according to applied voltage and tip radius. In this experiment, electrode system was point-plane geometry. The tip radius of needle was 5, 10, 20 and $25{\mu}m$, respectively. Applied voltage was AC and DC. We measured breakdown voltage for each tip radius with increasing electrode gap, 2mm to 10mm. Under nonuniform electric field, breakdown strength was higher when needle was negative than when needle was positive. Because it is polarity effects due to space charge. And the more sharp tip radius, whether we applied AC or DC, the higher breakdown strength. As tip radius increase, breakdown strength decreases exponentially.

  • PDF