• Title/Summary/Keyword: AC Measurement Standard

Search Result 41, Processing Time 0.016 seconds

A Study on the Safety Estimation of Wiring Connection Connector Manufactured by Housing Type (하우징 형태(Housing Type)로 제작된 배선 연결 커넥터의 안전성 평가에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • The purpose of this study is to evaluate the safety of a wire connector fabricated for the effective installation of a lighting fixture including its contact resistance, insulation resistance, withstanding voltage characteristics, etc., and to provide the basis for the analysis and judgment of PL(Product Liability) dispute by presenting a damage pattern due to a general flame and overcurrent. This study applied the Korean Standard (KS) for the incombustibility test of the connector using a general flame and performed an overcurrent characteristics test of the connector using PCITS (Primary Current Injection Test System). The contact resistance of the housing connector was measured using a high resistance meter and the insulation resistance was measured using a multimeter. In addition, a supply voltage of AC 1,500V for testing the withstanding voltage characteristics was applied to both ends of the connector. Measurement was performed on 5 specimens and the measured values were used as a basis for judgment. Since the connector is fabricated in the form of a housing, it can be connected and separated easily and has a structure that allows no foreign material to enter. In addition, since it has a structure that allows wires to be connected only when their polarity is identical, any misconnection that may occur during installation can be prevented. When the incombustibility test was performed by applying a general flame to the connector, it showed outstanding incombustibility characteristics and the blade and blade holder connected to the housing remained firmly secured even after the insulation sheath (PVC) was completely destroyed by fire. In addition, the mechanism of the damaged connecting wire showed a comparatively uniform carbonization pattern and it was found that some residual melted insulation material was attached to both ends. In the accelerated life test (ALT) to which approximately 500% of the rated current was applied, the connector damage proceeded in the order of white smoke generation, wire separation, spark occurrence and carbonization. That is, it could be seen that the connector damaged by overcurrent lost its own metallic color with traces of discoloration and carbonization. The contact resistance of the connector at a normal state was 2.164mV/A on average. The contact resistance measured after the high temperature test was 3.258mV/A. In addition, the insulation resistance after the temperature test was completed was greater than $10G\Omega$ and the withstanding voltage test result showed that no insulation breakdown occurred to all specimens showing stable withstanding voltage and insulation resistance characteristics.